Câu hỏi:

19/06/2024 434

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = {m^2}{x^4} - \left( {{m^2} - 2019m} \right){x^2} - 1\) có đúng một cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• TH1: \(m = 0 \Rightarrow y =  - 1\) nên hàm số không có cực trị \( \Rightarrow m = 0\) (loại).

• TH2: \(m \ne 0 \Rightarrow {m^2} > 0.\)

Hàm số \(y = {m^2}{x^4} - \left( {{m^2} - 2019m} \right){x^2} - 1\) có đúng một cực trị \( \Leftrightarrow ab \ge 0\)

\( \Leftrightarrow  - {m^2}\left( {{m^2} - 2019m} \right) \ge 0 \Leftrightarrow {m^2} - 2019m \le 0 \Leftrightarrow 0 \le m \le 2019.{\rm{ }}\)

Vì \(m \ne 0 \Rightarrow 0 < m \le 2019.\)

Do \(m \in \mathbb{Z}\) nên có 2019 giá trị của tham số \(m\) thoả mãn yêu cầu bài toán. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Dân cư nông thôn của nước ta chiếm tỉ lệ cao và ngày càng giảm. Chọn C.

Lời giải

Xét hàm số \(T =  - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Ta có \(T' =  - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)

Nhiệt độ thấp nhất trong phòng đạt được là:

\({T_{\min }} = T\left( {10} \right) =  - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).

Đáp án: \(18,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP