Câu hỏi:
19/06/2024 178Trên mặt phẳng tọa độ \[Oxy,\] cho hai điểm \(A\left( {1\,;\,\,1} \right),B\left( {4\,;\,\, - 3} \right).\) Gọi \(C(a;b)\) thuộc đường thẳng \((d):x - 2y - 1 = 0\) sao cho khoảng cách từ \(C\) đến đường thẳng \(AB\) bằng 6 . Biết rằng \(C\) có hoành độ nguyên, giá trị của \(a + b\) bằng
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có \(\overrightarrow {AB} = \left( {3\,;\,\, - 4} \right).\)
Suy ra, phương trình tổng quát của đường thẳng \[AB\] có dạng: \(4x + 3y + m = 0.\)
• Vì \(A\left( {1\,;\,\,1} \right) \in AB\) nên \(4.1 + 3.1 + m = 0 \Leftrightarrow m = - 7 \Rightarrow AB:4x + 3y - 7 = 0.\)
• Vì \(C\left( {a\,;\,\,b} \right) \in d:x - 2y - 1 = 0 \Rightarrow a - 2b - 1 = 0 \Rightarrow a = 2b + 1.\)
Theo giả thiết, ta có \(d\left( {C\,;\,\,AB} \right) = 6 \Leftrightarrow \frac{{\left| {4a + 3b - 7} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 6 \Leftrightarrow \left| {4a + 3b - 7} \right| = 30.\)
Thay \(a = 2b + 1\) vào phương trình trên ta được \(\left| {4\left( {2b + 1} \right) + 3b - 7} \right| = 30 \Leftrightarrow \left| {11b - 3} \right| = 30\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{11b - 3 = 30}\\{11b - 3 = - 30}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{b = 3}\\{b = \frac{{ - 27}}{{11}}}\end{array}.} \right.} \right.\) Do \(C\) có toạ độ nguyên nên \(b = 3 \Rightarrow a = 7 \Rightarrow a + b = 10.\)
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Để tăng nhiệt độ trong phòng từ \(28^\circ {\rm{C}}\), một hệ thống làm mát được phép hoạt động trong 10 phút. Gọi \(T\) (đơn vị \(^\circ C\)) là nhiệt độ phòng ở phút thứ \(t\) được cho bởi công thức \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\) Nhiệt độ thấp nhất trong phòng đạt được trong thời gian 10 phút kể từ khi hệ thống bắt đầu hoạt động là bao nhiêu độ C?
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Trong không gian \[Oxyz,\] cho ba điểm \[A\left( {3\,;\,\,5\,;\, - 1} \right),\,\,B\left( {7\,;\,\,x\,;\,\,1} \right)\] và \(C\left( {9\,;\,\,2\,;\,\,y} \right).\) Để ba điểm \[A,\,\,B,\,\,C\] thẳng hàng thì giá trị \(x + y\) bằng
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận