Câu hỏi:
19/06/2024 581Cho \[a,{\rm{ }}b,{\rm{ }}c\] đều khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính \(T = \frac{c}{a} + \frac{c}{b}.\)
Quảng cáo
Trả lời:
Đặt \({4^a} = {25^b} = {10^c} = t.\)
• \({4^a} = t \Leftrightarrow a = {\log _4}t\);
• \({25^b} = t \Leftrightarrow b = {\log _5}t\);
• \({10^c} = t \Leftrightarrow c = {\log _{10}}t\).
Suy ra \(T = \frac{c}{a} + \frac{c}{b} = \frac{{{{\log }_{10}}t}}{{{{\log }_4}t}} + \frac{{{{\log }_{10}}t}}{{{{\log }_{25}}t}} = \frac{{{{\log }_t}4}}{{{{\log }_t}10}} + \frac{{{{\log }_t}25}}{{{{\log }_t}10}}\)\( = \frac{{{{\log }_t}4.25}}{{{{\log }_t}10}} = \frac{{{{\log }_t}100}}{{{{\log }_t}10}} = 2.\)
Chọn C.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Xét hàm số \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Ta có \(T' = - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)
Nhiệt độ thấp nhất trong phòng đạt được là:
\({T_{\min }} = T\left( {10} \right) = - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).
Đáp án: \(18,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.