Câu hỏi:
19/06/2024 266Trong không gian \[Oxyz,\] xét mặt cầu \(\left( S \right)\) có phương trình dạng \({x^2} + {y^2} + {z^2} - 4x + 2y - 2az + 10a = 0.\) Tập hợp các giá trị thực của tham số \(a\) để \(\left( S \right)\) có chu vi đường tròn lớn nhất bằng \(8\pi \) là
Quảng cáo
Trả lời:
Đường tròn lớn có chu vi bằng \(8\pi \) nên bán kính của \((S)\) là \(\frac{{8\pi }}{{2\pi }} = 4.\)
Từ phương trình của \((S)\) suy ra bán kính của \((S)\) là \(\sqrt {{2^2} + {1^2} + {a^2} - 10a} .\)
Do đó \(\sqrt {{2^2} + {1^2} + {a^2} - 10a} = 4 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = - 1}\\{a = 11}\end{array}} \right..\) Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Để tăng nhiệt độ trong phòng từ \(28^\circ {\rm{C}}\), một hệ thống làm mát được phép hoạt động trong 10 phút. Gọi \(T\) (đơn vị \(^\circ C\)) là nhiệt độ phòng ở phút thứ \(t\) được cho bởi công thức \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\) Nhiệt độ thấp nhất trong phòng đạt được trong thời gian 10 phút kể từ khi hệ thống bắt đầu hoạt động là bao nhiêu độ C?
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh $a$, cạnh bên \[SA\] vuông góc với đáy và $SA=a\sqrt{3}.$ Khoảng cách từ điểm $A$ đến mặt phẳng $\left( SBC \right)$ bằng
Câu 7:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận