Câu hỏi:

19/06/2024 136

Cho số phức \(z\) thỏa mãn \(\left| {z - 2} \right| = 2.\) Biết rằng tập hợp các điểm biểu diễn các số phức \(w = \left( {1 - i} \right)z + i\) là một đường tròn. Bán kính \(r\) của đường tròn đó là

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1: Ta có \(w = (1 - i)z + i \Leftrightarrow z = \frac{{w - i}}{{1 - i}}\)

Đặt \(w = x + yi\,\,\left( {x,y \in \mathbb{R}} \right)\)\( \Rightarrow z = \frac{{x + yi - i}}{{1 - i}}.\)

Ta có \(\left| {z - 2} \right| = 2 \Leftrightarrow \left| {\frac{{x + yi - i}}{{1 - i}} - 2} \right| = 2 \Leftrightarrow \left| {\frac{{(x + yi - i)(1 + i)}}{2} - 2} \right| = 2.\)

\( \Leftrightarrow \left| {x + xi + yi - y - i + 1 - 4} \right| = 4 \Leftrightarrow \left| {x - y - 3 + (x + y - 1)i} \right| = 4\)

\( \Leftrightarrow {\left( {x - y - 3} \right)^2} + {\left( {x + y - 1} \right)^2} = 16\)

\( \Leftrightarrow {x^2} + {y^2} + 9 - 2xy + 6y - 6x + {x^2} + {y^2} + 1 + 2xy - 2y - 2x = 16\)

\( \Leftrightarrow 2{x^2} + 2{y^2} - 8x + 4y - 6 = 0 \Leftrightarrow {x^2} + {y^2} - 4x + 2y - 3 = 0\)

Đường tròn có bán kính là \(R = \sqrt {{2^2} + {1^2} + 3}  = 2\sqrt 2 .\)

Cách 2: Ta có \[w = \left( {1 - i} \right)z + i \Leftrightarrow z = \frac{{w - i}}{{1 - i}} \Leftrightarrow z - 2 = \frac{{w - i}}{{1 - i}} - 2\]

\( \Leftrightarrow z - 2 = \frac{{w - i - 2 + 2i}}{{1 - i}} = \frac{{w - 2 + i}}{{1 - i}} \Leftrightarrow \left| {z - 2} \right| = \left| {\frac{{w - 2 + i}}{{1 - i}}} \right|\).

Suy ra \(\left| {z - 2} \right| = 2 \Leftrightarrow \left| {\frac{{w - 2 + i}}{{1 - i}}} \right| = 2 \Leftrightarrow \frac{{\left| {w - 2 + i} \right|}}{{\left| {1 - i} \right|}} = 2 \Leftrightarrow \left| {w - 2 + i} \right| = 2\sqrt 2 .\) Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Dân cư nông thôn của nước ta có đặc điểm nào sau đây?

Xem đáp án » 29/06/2024 23,159

Câu 2:

Để tăng nhiệt độ trong phòng từ \(28^\circ {\rm{C}}\), một hệ thống làm mát được phép hoạt động trong 10 phút. Gọi \(T\) (đơn vị \(^\circ C\)) là nhiệt độ phòng ở phút thứ \(t\) được cho bởi công thức \(T =  - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\) Nhiệt độ thấp nhất trong phòng đạt được trong thời gian 10 phút kể từ khi hệ thống bắt đầu hoạt động là bao nhiêu độ C?

Xem đáp án » 13/07/2024 22,771

Câu 3:

Media VietJack
Đường gấp khúc ABC trong hình bên là đồ thị của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 2;\,\,3} \right].\) Khi đó, tích phân \(\int\limits_{ - 2}^3 {f\left( x \right){\rm{d}}x} \) bằng

Xem đáp án » 19/06/2024 10,281

Câu 4:

Trong không gian \[Oxyz,\] cho hai đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y + 2}}{1} = \frac{{z - 1}}{2}\) và \({d_2}:\frac{{x - 1}}{2} = \frac{{y - 1}}{1} = \frac{{z + 2}}{1}.\) Mặt phẳng \(\left( P \right):x + ay + bz + c = 0\,\,\,(c > 0)\) song song với \({d_1},\,\,{d_2}\) và khoảng cách từ \({d_1}\) đến \(\left( P \right)\) bằng 2 lần khoảng cách từ \({d_2}\) đến \(\left( P \right)\). Tính

Xem đáp án » 11/07/2024 3,448

Câu 5:

Đại hội Quốc dân họp ở Tân Trào (8-1945) đã quyết định thành lập

Xem đáp án » 29/06/2024 2,450

Câu 6:

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(f(0) = 0\) và \(f'\left( x \right)\left( {1 + {e^{f\left( x \right)}}} \right) = 1 + {e^x},\,\,\forall x \in \mathbb{R}.\) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = 1,\,\,x = 3\) bằng

Xem đáp án » 13/07/2024 2,162

Câu 7:

Trong không gian \[Oxyz,\] cho ba điểm \[A\left( {3\,;\,\,5\,;\, - 1} \right),\,\,B\left( {7\,;\,\,x\,;\,\,1} \right)\] và \(C\left( {9\,;\,\,2\,;\,\,y} \right).\) Để ba điểm \[A,\,\,B,\,\,C\] thẳng hàng thì giá trị \(x + y\) bằng

Xem đáp án » 18/06/2024 1,935
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua