Câu hỏi:
13/07/2024 279Cho một đa giác đều có \[2n\] đỉnh \(\left( {n \ge 2\,,\,\,n \in {\mathbb{N}^*}} \right).\) Chọn ngẫu nhiên ba đỉnh trong số 2n đỉnh của đa giác đó, biết xác suất ba đỉnh được chọn tạo thành một tam giác vuông là \[0,2.\] Giá trị \(n\) bằng
Quảng cáo
Trả lời:
Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là \(C_{2n}^3\).
Số đường chéo đi qua tâm là \(n\).
Suy ra, số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là \(C_n^2\).
Số tam giác vuông được tạo thành là \(4C_n^2\).
Khi đó, ta được phương trình \(\frac{{4 \cdot C_n^2}}{{C_{2n}^3}} = 0,2 \Rightarrow n = \frac{1}{8}\).
Đáp án: \(\frac{1}{8}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Xét hàm số \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Ta có \(T' = - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)
Nhiệt độ thấp nhất trong phòng đạt được là:
\({T_{\min }} = T\left( {10} \right) = - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).
Đáp án: \(18,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận