Câu hỏi:

13/07/2024 290

Cho một đa giác đều có \[2n\] đỉnh \(\left( {n \ge 2\,,\,\,n \in {\mathbb{N}^*}} \right).\) Chọn ngẫu nhiên ba đỉnh trong số 2n đỉnh của đa giác đó, biết xác suất ba đỉnh được chọn tạo thành một tam giác vuông là \[0,2.\] Giá trị \(n\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là \(C_{2n}^3\).

Số đường chéo đi qua tâm là \(n\).

Suy ra, số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là \(C_n^2\).

Số tam giác vuông được tạo thành là \(4C_n^2\).

Khi đó, ta được phương trình \(\frac{{4 \cdot C_n^2}}{{C_{2n}^3}} = 0,2 \Rightarrow n = \frac{1}{8}\).

Đáp án: \(\frac{1}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Dân cư nông thôn của nước ta chiếm tỉ lệ cao và ngày càng giảm. Chọn C.

Lời giải

Xét hàm số \(T =  - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Ta có \(T' =  - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)

Nhiệt độ thấp nhất trong phòng đạt được là:

\({T_{\min }} = T\left( {10} \right) =  - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).

Đáp án: \(18,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP