Câu hỏi:
11/07/2024 227Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} - 2x + 2m}}{{\left( {x - 1} \right)\left( {x + m} \right)}}.\) Có bao nhiêu giá trị của \(m\) để đồ thị hàm số có duy nhất một tiệm cận đứng?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đặt \(g(x) = {x^2} - 2x + 2m.\)
− Khi \(m = - 1\) ta có hàm số \(y = f(x) = \frac{{{x^2} - 2x - 2}}{{{{\left( {x - 1} \right)}^2}}}.\)
− Khi đó \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 2x - 2}}{{{{\left( {x - 1} \right)}^2}}} = - \infty \) suy ra đồ thị của hàm số đã cho có duy nhất một tiệm cận đứng là \(x = 1.\)
− Khi \(m \ne 1\), xét hàm số \[y = f(x) = \frac{{{x^2} - 2x + 2m}}{{\left( {x - 1} \right)\left( {x + m} \right)}}\].
• TH1: Đồ thị hàm số đã cho có duy nhất một tiệm cận đứng \(x = 1.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{g(1) \ne 0}\\{g( - m) = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 1 + 2m \ne 0}\\{{m^2} + 4m = 0}\end{array} \Leftrightarrow \left\{ \begin{array}{l}m \ne \frac{1}{2}\\\left[ \begin{array}{l}m = 0\\m = - 4\end{array} \right.\end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 0}\\{m = - 4}\end{array}} \right.} \right.} \right.\)
• TH2: Đồ thị hàm số đã cho có duy nhất một tiệm cận đứng \(x = m.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{g(1) = 0}\\{g( - m) \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 + 2m = 0}\\{{m^2} + 4m \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = \frac{1}{2}}\\{m \ne 0}\\{m \ne - 4}\end{array} \Leftrightarrow m = \frac{1}{2}.} \right.} \right.} \right.\)
Vậy có 4 giá trị của \(m\) thoả mãn yêu cầu bài toán.
Đáp án: 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Để tăng nhiệt độ trong phòng từ \(28^\circ {\rm{C}}\), một hệ thống làm mát được phép hoạt động trong 10 phút. Gọi \(T\) (đơn vị \(^\circ C\)) là nhiệt độ phòng ở phút thứ \(t\) được cho bởi công thức \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\) Nhiệt độ thấp nhất trong phòng đạt được trong thời gian 10 phút kể từ khi hệ thống bắt đầu hoạt động là bao nhiêu độ C?
Câu 3:
Câu 4:
Câu 5:
Trong không gian \[Oxyz,\] cho ba điểm \[A\left( {3\,;\,\,5\,;\, - 1} \right),\,\,B\left( {7\,;\,\,x\,;\,\,1} \right)\] và \(C\left( {9\,;\,\,2\,;\,\,y} \right).\) Để ba điểm \[A,\,\,B,\,\,C\] thẳng hàng thì giá trị \(x + y\) bằng
Câu 6:
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận