Câu hỏi:
13/07/2024 152Cho \[X\] là tập hợp tất cả các số phức \[z\] có phần thực và phần ảo không vượt quá 4, đồng thời tổng của phần thực và phần ảo không nhỏ hơn 6. Gọi m là môđun nhỏ nhất của các số phức trong \[X\] và \[M\] là môđun lớn nhất của các số phức trong \[X.\] Hỏi giá trị của tích \[M \cdot m\] bằng bao nhiêu?
Quảng cáo
Trả lời:
Đặt \(z = x + yi\quad (x,y \in \mathbb{R})\)
Theo bài ra, ta có \(x \le 4,\,\,y \le 4\) và \(x + y \ge 6.\)
Vẽ các đường thẳng \(x = 4,\,\,y = 4\) và \(x + y = 6\) trên hệ toạ độ \[Oxy.\]
Vẽ các miền phẳng thoả mãn \(x \le 4,\,\,y \le 4\) và \(x + y - 6 \ge 0.\)
Dễ thấy, phần giao nhau của 3 miền trên là tam giác xanh đậm.
Với toạ độ các đỉnh là \(A\left( {4\,;\,\,4} \right),\,\,B\left( {4\,;\,\,2} \right)\) và \(C\left( {2\,;\,\,4} \right).\)
Ta có \(\left| z \right| = OM\) với \(M\) là điểm biểu diễn số phức \(z\).
Khi đó, điểm \(M\) nằm trong tam giác \[ABC\].
Gọi \(H\left( {3\,;\,\,3} \right)\) là trung điểm của \(BC \Rightarrow O,\,\,A,\,\,H\) thẳng hàng
Suy ra \({\left| z \right|_{\max }} = O{M_{\max }} = OA = \sqrt {{4^2} + {4^2}} = 4\sqrt 2 .\)
Và \({\left| z \right|_{\min }} = O{M_{\min }} = OH = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 .\)
Vậy \(M \cdot m = 4\sqrt 2 \cdot 3\sqrt 2 = 24.\)
Đáp án: 24.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Xét hàm số \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Ta có \(T' = - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)
Nhiệt độ thấp nhất trong phòng đạt được là:
\({T_{\min }} = T\left( {10} \right) = - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).
Đáp án: \(18,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận