Câu hỏi:
13/07/2024 114Cho \[X\] là tập hợp tất cả các số phức \[z\] có phần thực và phần ảo không vượt quá 4, đồng thời tổng của phần thực và phần ảo không nhỏ hơn 6. Gọi m là môđun nhỏ nhất của các số phức trong \[X\] và \[M\] là môđun lớn nhất của các số phức trong \[X.\] Hỏi giá trị của tích \[M \cdot m\] bằng bao nhiêu?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đặt \(z = x + yi\quad (x,y \in \mathbb{R})\)
Theo bài ra, ta có \(x \le 4,\,\,y \le 4\) và \(x + y \ge 6.\)
Vẽ các đường thẳng \(x = 4,\,\,y = 4\) và \(x + y = 6\) trên hệ toạ độ \[Oxy.\]
Vẽ các miền phẳng thoả mãn \(x \le 4,\,\,y \le 4\) và \(x + y - 6 \ge 0.\)
Dễ thấy, phần giao nhau của 3 miền trên là tam giác xanh đậm.
Với toạ độ các đỉnh là \(A\left( {4\,;\,\,4} \right),\,\,B\left( {4\,;\,\,2} \right)\) và \(C\left( {2\,;\,\,4} \right).\)
Ta có \(\left| z \right| = OM\) với \(M\) là điểm biểu diễn số phức \(z\).
Khi đó, điểm \(M\) nằm trong tam giác \[ABC\].
Gọi \(H\left( {3\,;\,\,3} \right)\) là trung điểm của \(BC \Rightarrow O,\,\,A,\,\,H\) thẳng hàng
Suy ra \({\left| z \right|_{\max }} = O{M_{\max }} = OA = \sqrt {{4^2} + {4^2}} = 4\sqrt 2 .\)
Và \({\left| z \right|_{\min }} = O{M_{\min }} = OH = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 .\)
Vậy \(M \cdot m = 4\sqrt 2 \cdot 3\sqrt 2 = 24.\)
Đáp án: 24.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Để tăng nhiệt độ trong phòng từ \(28^\circ {\rm{C}}\), một hệ thống làm mát được phép hoạt động trong 10 phút. Gọi \(T\) (đơn vị \(^\circ C\)) là nhiệt độ phòng ở phút thứ \(t\) được cho bởi công thức \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\) Nhiệt độ thấp nhất trong phòng đạt được trong thời gian 10 phút kể từ khi hệ thống bắt đầu hoạt động là bao nhiêu độ C?
Câu 3:
Câu 4:
Trong không gian \[Oxyz,\] cho ba điểm \[A\left( {3\,;\,\,5\,;\, - 1} \right),\,\,B\left( {7\,;\,\,x\,;\,\,1} \right)\] và \(C\left( {9\,;\,\,2\,;\,\,y} \right).\) Để ba điểm \[A,\,\,B,\,\,C\] thẳng hàng thì giá trị \(x + y\) bằng
Câu 5:
Câu 6:
Một mảnh vườn hình đa giác có chu vi bằng 63m độ dài các cạnh là các số nguyên lập thành một cấp số nhân có công bội bằng 2. Hỏi số cạnh của đa giác đó là bao nhiêu?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!