Câu hỏi:
13/07/2024 199Cho khối tứ diện \[ABCD\] có cạnh \[AC\] và \[BD\] thoả mãn \(A{C^2} + B{D^2} = 16\) và các cạnh còn lại đều bằng 6. Thể tích khối tứ diện \[ABCD\] đạt giá trị lớn nhất bằng bao nhiêu? (kết quả làm tròn đến chữ số hàng đơn vị).
Quảng cáo
Trả lời:
Gọi \[E,\,\,F\] lần lượt là trung điểm của \[BD,\,\,AC.\]
Giả sử \[AC = a\,;\,\,BD = b\], theo giả thiết ta có \({a^2} + {b^2} = 16\,\,(a,b > 0)\)
Xét \(\Delta ABC\) và \(\Delta ADC\) có: AC chung; \(AB = AD\); \(BC = CD\).
Do đó \(\Delta ABC = \Delta ADC\,\,(c.c.c)\)
Suy ra \(BF = GF\) (hai trung tuyến tương ứng).
Ta có \(BF = \sqrt {A{B^2} - A{F^2}} = \sqrt {{6^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \sqrt {36 - \frac{{{a^2}}}{4}} \)
\(EF = \sqrt {B{F^2} - B{E^2}} = \sqrt {36 - \frac{{{a^2}}}{4} - \frac{{{b^2}}}{4}} = \sqrt {36 - \frac{{16}}{4}} = \sqrt {32} \)
\( \Rightarrow {S_{BDF}} = \frac{1}{2}EF \cdot BD = \frac{1}{2} \cdot \sqrt {32} \cdot b = 2\sqrt 2 b\)
Lại có \(\left\{ {\begin{array}{*{20}{l}}{AC \bot BF}\\{AC \bot DF}\end{array} \Rightarrow AC \bot \left( {BDF} \right)} \right.\).
Khi đó \({V_{ABCD}} = {V_{A.BDF}} + {V_{C.BDF}}\)\( = \frac{1}{3}AF \cdot {S_{BDF}} + \frac{1}{3} \cdot CF \cdot {S_{BDF}}\)
\( = \frac{1}{3} \cdot {S_{BDF}} \cdot \left( {AF + CF} \right) = \frac{1}{3} \cdot {S_{BDF}} \cdot AC\)\( = \frac{1}{3}a \cdot 2\sqrt 2 b = \frac{{2\sqrt 2 }}{3}ab\).
Áp dụng bất đẳng thức Côsi, ta có: \(ab \le \frac{{{a^2} + {b^2}}}{2} = \frac{{16}}{2} = 8 \Rightarrow {V_{ABCD}} \le \frac{{2\sqrt 2 }}{3}.8 = \frac{{16\sqrt 2 }}{3}\).
Vậy \({V_{\max }} = \frac{{16\sqrt 2 }}{3} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = b}\\{{a^2} + {b^2} = 16}\end{array} \Leftrightarrow a = b = 2\sqrt 2 } \right..\)
Đáp án: \[\frac{{16\sqrt 2 }}{3}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Xét hàm số \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Ta có \(T' = - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)
Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)
Nhiệt độ thấp nhất trong phòng đạt được là:
\({T_{\min }} = T\left( {10} \right) = - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).
Đáp án: \(18,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận