Câu hỏi:

19/06/2024 393 Lưu

Cho hàm số \(f(x)\) xác định và liên tục trên \(\mathbb{R}\) thỏa mãn \(2\int f \left( x \right){\rm{d}}x + \frac{{{x^3}}}{3} = \int {{f^2}} \left( x \right){\rm{d}}x + x + C\) với \(C\) là hằng số. Diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),\,\,y = 1,\,\,x = 0,\,\,x = 2\) bằng

A. 6.          
B. 2.                              
C. 4.     
D. 8.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lấy đạo hàm hai vế của giả thiết, ta được \(2f\left( x \right) + {x^2} = {f^2}\left( x \right) + 1\)

\( \Leftrightarrow {f^2}\left( x \right) - 2f\left( x \right) + 1 = {x^2} \Leftrightarrow {\left[ {f\left( x \right) - 1} \right]^2} = {x^2} \Leftrightarrow \left| {f\left( x \right) - 1} \right| = \left| x \right|.\)

Diện tích hình phẳng cần tính là .\[S = \int\limits_0^2 {\left| {f\left( x \right) - 1} \right|{\rm{d}}x}  = \int\limits_0^2 {\left| x \right|{\rm{d}}x}  = 2.\] Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Gọi vị trí thấp nhất của ống bương là là vị trí của máng nước (như hình vẽ).

Media VietJack

Tung độ của điểm \[M\] là \({y_M} = 11 - 6,5 = 4,5\)

\( \Rightarrow \sin \widehat {xOM} = \frac{{{y_M}}}{{OM}} = \frac{{4,5}}{5} = 0,9 \Rightarrow \widehat {xOM} \approx 64^\circ \).

Ta có \(\widehat {TOM} = \widehat {TOx} + \widehat {xOM} = 90^\circ  + 64^\circ  = 154^\circ .\)

Vì thời gian cọn nước thực hiện 1 vòng quay là 3 phút nên thời gian ống bương di chuyển từ \(T\)đến \(M\) là \(\frac{{3.154}}{{360}} = \frac{{77}}{{60}}\) (phút). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP