Câu hỏi:
19/06/2024 183Cho biết phương trình \({\log _3}\left( {{3^{x + 1}} - 1} \right) = 2x + {\log _{\frac{1}{3}}}2\) có hai nghiệm \({x_1},{x_2}.\) Hãy tính tổng \(S = {27^{{x_1}}} + {27^{{x_2}}}?\)
Quảng cáo
Trả lời:
Ta có \({\log _3}\left( {{3^{x + 1}} - 1} \right) = 2x + {\log _{\frac{1}{3}}}2 \Leftrightarrow {\log _3}2\left( {{3^{x + 1}} - 1} \right) = 2x\)
\( \Leftrightarrow {2.3^{x + 1}} - 2 = {3^{2x}} \Leftrightarrow {3^{2x}} - {6.3^x} + 2 = 0.\)
Đặt \({3^x} = t\,\,\left( {t > 0} \right)\), phương trình trở thành \({t^2} - 6t + 2 = 0.\)
Phương trình luôn có hai nghiệm dương phân biệt.
Đặt \({3^{{x_1}}} = {t_1},{3^{{x_2}}} = {t_2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{t_1} + {t_2} = 6}\\{{t_1} \cdot {t_2} = 2}\end{array}} \right.\)
Vậy \(S = \left( {t_1^3 + t_2^3} \right) = {\left( {{t_1} + {t_2}} \right)^3} - 3{t_1} \cdot {t_2}\left( {{t_1} + {t_2}} \right) = 216 - 3.2.6 = 180.\) Chọn D.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)
Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:
\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)
\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}} = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)
Bảng biến thiên:
\(x\) |
0 |
\(\frac{3}{2}\) |
4 |
\(t'\left( x \right)\) |
\( - \) |
0 + |
|
\(t\left( x \right)\) |
\(\frac{{11}}{{15}}\) |
|
\(\frac{{\sqrt 5 }}{3}\) |
|
|
\(\frac{2}{3}\) |
|
Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.
Lời giải
Tốc độ truyền bệnh là \(f'\left( t \right) = 90t - 3{t^2} = 675 - 3{\left( {t - 15} \right)^2} \le 675\)
Vậy tốc độ truyền bệnh lớn nhất khi \(t = 15\), tức là vào ngày thứ 15. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.