Câu hỏi:

19/06/2024 212 Lưu

Cho biết phương trình \({\log _3}\left( {{3^{x + 1}} - 1} \right) = 2x + {\log _{\frac{1}{3}}}2\) có hai nghiệm \({x_1},{x_2}.\) Hãy tính tổng \(S = {27^{{x_1}}} + {27^{{x_2}}}?\)

A. \(S = 252.\)               
B. \(S = 45.\)                
C. \(S = 9.\)     
D. \(S = 180.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({\log _3}\left( {{3^{x + 1}} - 1} \right) = 2x + {\log _{\frac{1}{3}}}2 \Leftrightarrow {\log _3}2\left( {{3^{x + 1}} - 1} \right) = 2x\)

\( \Leftrightarrow {2.3^{x + 1}} - 2 = {3^{2x}} \Leftrightarrow {3^{2x}} - {6.3^x} + 2 = 0.\)

Đặt \({3^x} = t\,\,\left( {t > 0} \right)\), phương trình trở thành \({t^2} - 6t + 2 = 0.\)

Phương trình luôn có hai nghiệm dương phân biệt.

Đặt \({3^{{x_1}}} = {t_1},{3^{{x_2}}} = {t_2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{t_1} + {t_2} = 6}\\{{t_1} \cdot {t_2} = 2}\end{array}} \right.\)

Vậy \(S = \left( {t_1^3 + t_2^3} \right) = {\left( {{t_1} + {t_2}} \right)^3} - 3{t_1} \cdot {t_2}\left( {{t_1} + {t_2}} \right) = 216 - 3.2.6 = 180.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Gọi vị trí thấp nhất của ống bương là là vị trí của máng nước (như hình vẽ).

Media VietJack

Tung độ của điểm \[M\] là \({y_M} = 11 - 6,5 = 4,5\)

\( \Rightarrow \sin \widehat {xOM} = \frac{{{y_M}}}{{OM}} = \frac{{4,5}}{5} = 0,9 \Rightarrow \widehat {xOM} \approx 64^\circ \).

Ta có \(\widehat {TOM} = \widehat {TOx} + \widehat {xOM} = 90^\circ  + 64^\circ  = 154^\circ .\)

Vì thời gian cọn nước thực hiện 1 vòng quay là 3 phút nên thời gian ống bương di chuyển từ \(T\)đến \(M\) là \(\frac{{3.154}}{{360}} = \frac{{77}}{{60}}\) (phút). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP