Câu hỏi:

19/06/2024 536 Lưu

Cho hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x + 2.\) Tìm tất cả các giá trị của tham số \(m\) sao cho bất phương trình \(f\left( {3x + 1} \right) + 9{x^2} - 6x + 1 \le m\) đúng với mọi \[x \in \left[ {0\,;\,1} \right]\]?

A. \(m \ge 18.\)             
B. \(m \ge 9.\)               
C. \(m \ge 10.\)     
D. \(m \ge 19.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(f'\left( x \right) = 3{x^2} - 12x + 9.\)

Xét hàm số \[g\left( x \right) = f\left( {3x + 1} \right) + 9{x^2} - 6x + 1\] ta có \(g'\left( x \right) = 3f'\left( {3x + 1} \right) + 18x - 6\).

Suy ra \(g'\left( x \right) = 0 \Leftrightarrow f'\left( {3x + 1} \right) =  - 2\left( {3x + 1} \right) + 4.\)  (1)

Đặt \(t = 3x + 1\) khi đó mọi \(x \in \left[ {0\,;\,\,1} \right] \Rightarrow t \in \left[ {1\,;\,\,4} \right]\), khi đó (1) trở thành

\(f'\left( t \right) =  - 2t + 4 \Leftrightarrow 3{t^2} - 10t + 5 = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = \frac{{5 - \sqrt {10} }}{3} \notin \left[ {1\,;\,\,4} \right]}\\{t = \frac{{5 + \sqrt {10} }}{3} \in \left[ {1\,;\,\,4} \right]}\end{array}} \right.\).

Ta có \(g\left( 1 \right) = 3\,;\,\,g\left( 4 \right) = 10\,;\,\,g\left( {\frac{{3 + \sqrt {10} }}{3}} \right) \approx 0,3 \Rightarrow {\max _{\left[ {1\,;\,\,4} \right]}}g(t) = 10.\)

Do đó để \(f\left( {3x + 1} \right) + 9{x^2} - 6x + 1 \le m \Rightarrow m \ge 10.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Gọi vị trí thấp nhất của ống bương là là vị trí của máng nước (như hình vẽ).

Media VietJack

Tung độ của điểm \[M\] là \({y_M} = 11 - 6,5 = 4,5\)

\( \Rightarrow \sin \widehat {xOM} = \frac{{{y_M}}}{{OM}} = \frac{{4,5}}{5} = 0,9 \Rightarrow \widehat {xOM} \approx 64^\circ \).

Ta có \(\widehat {TOM} = \widehat {TOx} + \widehat {xOM} = 90^\circ  + 64^\circ  = 154^\circ .\)

Vì thời gian cọn nước thực hiện 1 vòng quay là 3 phút nên thời gian ống bương di chuyển từ \(T\)đến \(M\) là \(\frac{{3.154}}{{360}} = \frac{{77}}{{60}}\) (phút). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP