Câu hỏi:

19/06/2024 1,252

Trong hệ tọa độ Oxy cho  Gọi \(C\left( {a;\,b} \right)\) thuộc đường thẳng \(d:x - 2y - 1 = 0\) sao cho khoảng cách từ \(C\) đến đường thẳng \[AB\] bằng 6 . Biết rằng \(C\) có hoành độ nguyên. Tính \(a + b\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\overrightarrow {AB}  = (3; - 4).\)

Khi đó, phương trình của đường thẳng \[AB\] có dạng: \(4x + 3y + m = 0.\)

Vì \(A\left( {1\,;\,\,1} \right) \in AB\) nên \[4 \cdot 1 + 3 \cdot 1 + m = 0 \Leftrightarrow m =  - 7 \Rightarrow AB:4x + 3y - 7 = 0.\]

Vi \(C\left( {a\,;\,\,b} \right) \in d:x - 2y - 1 = 0 \Rightarrow a - 2b - 1 = 0 \Rightarrow a = 2b + 1.\)

Theo đề ra \[{\rm{d}}\left( {C\,,\,\,AB} \right) = 6 \Leftrightarrow \frac{{\left| {4a + 3b - 7} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 6 \Leftrightarrow \left| {4a + 3b - 7} \right| = 30.\]

Thay \(a = 2b + 1\) vào ta được: \(\left| {4\left( {2b + 1} \right) + 3b - 7} \right| = 30\)

\( \Leftrightarrow \left| {11b - 3} \right| = 30 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{11b - 3 = 30}\\{11b - 3 =  - 30}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{b = 3}\\{b =  - \frac{{27}}{{11}}}\end{array}} \right.} \right.\).

Do \(C\) có tọa độ nguyên nên \(b = 3\,;\,\,a = 7 \Rightarrow a + b = 10.\) Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Tia tử ngoại có có tác dụng diệt khuẩn do vậy nó có thể diệt được 99% vi khuẩn.

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Nước ngọt là vấn đề quan trọng hàng đầu đối với việc sử dụng hợp lí đất đai ở Đồng bằng sông Cửu Long vì 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay