Câu hỏi:
19/06/2024 196Một khuôn viên dạng nửa hình tròn có đường kính bằng m. Trên đó người ta thiết kế hai phần để trồng hoa có dạng của một cánh hoa hình parabol có đỉnh trùng với tâm nửa hình tròn và hai đầu mút của cánh hoa nằm trên nửa đường tròn (phần tô màu), cách nhau một khoảng bằng \[4\,\,m,\] phần còn lại của khuôn viên (phần không tô màu) dành để trồng cỏ Nhật Bản. Biết các kích thước cho như hình vẽ và kinh phí đế trồng cỏ Nhật Bản là \[100\,\,000\] đồng/m². Hỏi cần bao nhiêu tiền đế trồng cỏ Nhật Bản trên phần đất đó? (số tiền được làm tròn đến hàng nghìn).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đặt hệ trục toạ độ Oxy như hình vẽ.
Khi đó, phương trình nửa đường tròn là
\(y = \sqrt {{R^2} - {x^2}} = \sqrt {20 - {x^2}} .\)
Phương trình parabol \((P)\) có đỉnh là gốc toạ độ \(O\) nên có dạng \(y = a{x^2}.\)
Mà \((P)\) đi qua điểm \(\left( {2\,;\,\,4} \right)\) suy ra \(4 = a \cdot {2^2} \Leftrightarrow a = 1.\)
Diện tích bôi màu là \({S_1} = \int\limits_{ - 2}^2 {\left( {\sqrt {20 - {x^2}} - {x^2}} \right)\,} dx\).
Do đó, diện tích trồng cỏ là \(S = \frac{1}{2}{S_{(C)}} - {S_1} \approx 19,48\,\left( {{m^2}} \right).\)
Vậy số tiền cần tính là \[1\,\,948\,\,000\] đồng. Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) thỏa mãn các điều kiện \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'(1) = 3,\,\,f\left( 1 \right) = 2\) và \(f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó, giá trị của \(2a + b\) bằng
Câu 2:
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( { - 2\,;\,\,4\,;\,\,1} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right)\) và đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 + 2t}\\{z = - 2 + t}\end{array}} \right..\) Gọi \((S)\) là mặt cầu đi qua \[A,\,\,B\] và có tâm thuộc đường thẳng \[d.\] Bán kính mặt cầu \((S)\) bằng
Câu 3:
Trong không gian \[Oxyz,\] cho hai điểm \[A\left( {3\,;\,\,1\,;\,\,2} \right),\,\,B\left( { - 3\,;\,\, - 1\,;\,\,0} \right)\] và mặt phẳng \((P):x + y + 3z - 14 = 0.\) Điểm \(M\) thuộc mặt phẳng \((P)\) sao cho \(\Delta MAB\) vuông tại \[M.\] Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right).\)
Câu 4:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Thời gian chạy qua tóc mẹ
Một màu trắng đến nôn nao
Lưng mẹ cứ còng dần xuống
Cho con ngày một thêm cao.
(Trong lời mẹ hát – Trương Nam Hương)
Câu 5:
Đọc đoạn trích sau và trả lời câu hỏi:
Tiếng ai tha thiết bên cồn
Bâng khuâng trong dạ, bồn chồn bước đi
Áo chàm đưa buổi phân ly
Cầm tay nhau biết nói gì hôm nay...
(Việt Bắc – Tố Hữu)
Câu 6:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2021\,;\,\,2021} \right]\) để đồ thị hàm số \(y = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Câu 7:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận