Câu hỏi:

19/06/2024 695 Lưu

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = a,\,\,AD = a\sqrt 3 .\) Mặt bên \[SAB\] là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Cosin của góc giữa đường thẳng \[SD\] và mặt phẳng \(\left( {SBC} \right)\) bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Gọi \[H\] là trung điểm của \[AB\].

Vì \(\Delta SAB\) đều nên \(SH \bot AB\).

Mà \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) do đó \(SH \bot \left( {ABCD} \right).\)

Lại có \(BC \bot AB \Rightarrow BC \bot \left( {SAB} \right)\).

Kẻ \[HF \bot SB \Rightarrow BC \bot HF \Rightarrow HF \bot \left( {SBC} \right)\].

Gọi \(DH \cap BC = E,\,\,K\) là điểm đối xứng với \(E\) qua \(F.\)

Ta có \(AD\,{\rm{//}}\,BC \Rightarrow \frac{{HD}}{{HE}} = \frac{{HA}}{{HB}} = 1 \Rightarrow HD = HE.\)

Mà \(F\) là trung điểm của \(EK\) nên \(FH\) là đường trung bình của tam giác \(EDK.\)Suy ra \(DK\,{\rm{//}}\,HF.\)

Lại có \(HF \bot \left( {SBC} \right)\) nên \(DK \bot \left( {SBC} \right)\); \(\left( {SD,\,\,\left( {SBC} \right)} \right) = \left( {SD,\,\,SK} \right) = \widehat {DSK}\).

Ta có \[AH = HB = \frac{{AB}}{2} = \frac{a}{2}\]\( \Rightarrow DH = \sqrt {A{H^2} + A{D^2}}  = \sqrt {\frac{{{a^2}}}{2} + 3{a^2}}  = \frac{{a\sqrt {13} }}{2}.\)

Xét tam giác \(SAB\) đều cạnh \(a\) nên \(SH = \frac{{a\sqrt 3 }}{2}\)\( \Rightarrow SD = \sqrt {S{H^2} + H{D^2}}  = 2a.\)

Ta có \(\frac{1}{{H{F^2}}} = \frac{1}{{H{S^2}}} + \frac{1}{{H{B^2}}} = \frac{{16}}{3} \Rightarrow HF = \frac{{a\sqrt 3 }}{4}\)\( \Rightarrow DK = 2HF = \frac{{a\sqrt 3 }}{2}\).

Lại có \(DK \bot \left( {SBC} \right) \Rightarrow DK \bot EF \Rightarrow \widehat {SKD} = 90^\circ \)\( \Rightarrow \sin \widehat {SKD} = \frac{{DK}}{{D{\rm{S}}}} = \frac{{\sqrt 3 }}{4}\)

\( \Rightarrow \cos \widehat {SKD} = \frac{{\sqrt {13} }}{4} \Rightarrow \cos \left( {SD,\,\,\left( {SBC} \right)} \right) = \frac{{\sqrt {13} }}{4}\).

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[f'\left( 1 \right) = 3 \Rightarrow a + b = 3\].   (1)

Hàm số có đạo hàm liên tục trên khoảng \[\left( {0\,;\,\, + \infty } \right)\], các điểm \(x = 1,x = \frac{1}{2}\) đều thuộc \((0; + \infty )\) nên

\(f(x) = \int {f'} (x){\rm{d}}x = \int {\left( {a{x^2} + \frac{b}{{{x^3}}}} \right)} \,\,{\rm{d}}x = \frac{{a{x^3}}}{3} - \frac{b}{{2{x^2}}} + C.\)

• \(f\left( 1 \right) = 2 \Leftrightarrow \frac{a}{3} - \frac{b}{2} + C = 2\).                                                         (2)

• \(f\left( {\frac{1}{2}} \right) =  - \frac{1}{{12}} \Rightarrow \frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}\).   (3).

Từ (1), (2) và (3) ta được hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + b = 3}\\{\frac{a}{3} - \frac{b}{2} + C = 2}\\{\frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 1}\\{C = \frac{{11}}{6}}\end{array} \Rightarrow 2a + b = 2 \cdot 2 + 1 = 5.} \right.} \right.\)

Chọn C.

Lời giải

Biện pháp tu từ được sử dụng trong câu thơ “Áo chàm đưa buổi phân li” là hoán dụ (áo chàm). Hình ảnh “áo chàm” không đơn thuần dùng để chỉ màu áo quen thuộc của người dân Việt Bắc (áo nhuộm màu chàm) mà còn là hình ảnh nói thay cho toàn thể nhân dân Việt Bắc trong ngày đưa tiễn những đồng chí cách mạng về xuôi. Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP