Câu hỏi:
19/06/2024 42Trên mặt phẳng toạ độ Oxy, phương trình đường thẳng \(\Delta \) đi qua giao điểm của hai đường thẳng \({d_1}:2x + y - 3 = 0\) và \({d_2}:x - 2y + 1 = 0\) đồng thời tạo với đường thẳng \({d_3}:y - 1 = 0\) một góc bằng \(45^\circ \) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi \(A\left( {x\,;\,\,y} \right)\) là giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\), ta có hệ phương trình:
\(\left\{ {\begin{array}{*{20}{l}}{{d_1}:2x + y - 3 = 0}\\{{d_2}:x - 2y + 1 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 1}\end{array} \Rightarrow A\left( {1\,;\,\,1} \right) \in \Delta } \right.} \right.{\rm{. }}\)
Ta có \({d_3}:y - 1 = 0 \Rightarrow \overrightarrow {{n_3}} = \left( {0\,;\,\,1} \right).\)
Gọi vectơ pháp tuyến của đường thẳng \(\Delta \) là \(\vec n = \left( {a\,;\,\,b} \right)\) và \(\varphi = \left( {\Delta \,;\,\,{d_3}} \right).\)
Khi đó \(\frac{1}{{\sqrt 2 }} = \cos \varphi = \frac{{|b|}}{{\sqrt {{a^2} + {b^2}} \cdot \sqrt {0 + {1^2}} }}\)
\( \Leftrightarrow {a^2} + {b^2} = 2{b^2} \Rightarrow \left[ {\begin{array}{*{20}{l}}{a = b \Rightarrow a = b = 1 \Rightarrow \Delta :x + y - 2 = 0}\\{a = - b \Rightarrow a = 1\,;\,\,b = - 1 \Rightarrow \Delta :x - y = 0}\end{array}} \right.\).
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) thỏa mãn các điều kiện \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'(1) = 3,\,\,f\left( 1 \right) = 2\) và \(f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó, giá trị của \(2a + b\) bằng
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2021\,;\,\,2021} \right]\) để đồ thị hàm số \(y = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Câu 3:
Câu 4:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Thời gian chạy qua tóc mẹ
Một màu trắng đến nôn nao
Lưng mẹ cứ còng dần xuống
Cho con ngày một thêm cao.
(Trong lời mẹ hát – Trương Nam Hương)
Câu 5:
Cho hình chóp \[S.ABCD.\] Gọi \[I,\,\,J,\,\,K,\,\,H\] lần lượt là trung điểm các cạnh \[SA,\,\,SB,\,\,SC,\,\]\[\,SD.\] Tính thể tích khối chóp \[S.ABCD\] biết thể tích khối chóp \[S.IJKH\] bằng 1.
Câu 6:
Số giao điểm của đồ thị hàm số \(\sqrt {{x^4} - 4} = y + 5\) và đường thẳng \(y = x\) là
Câu 7:
Trong không gian \[Oxyz,\] cho hai điểm \[A\left( {3\,;\,\,1\,;\,\,2} \right),\,\,B\left( { - 3\,;\,\, - 1\,;\,\,0} \right)\] và mặt phẳng \((P):x + y + 3z - 14 = 0.\) Điểm \(M\) thuộc mặt phẳng \((P)\) sao cho \(\Delta MAB\) vuông tại \[M.\] Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right).\)
về câu hỏi!