Câu hỏi:
19/06/2024 151Cho vật thể \(\left( T \right)\) giới hạn bởi hai mặt phẳng \(x = 0\,;\,\,x = 2.\) Cắt vật thể \(\left( T \right)\) bởi mặt phẳng vuông góc với trục \[Ox\] tại \(x\,\,\left( {0 \le x \le 2} \right)\) ta thu được thiết diện là một hình vuông có cạnh bằng \(\left( {x + 1} \right){e^x}.\) Thể tích của vật thể \(\left( T \right)\) bằng
Quảng cáo
Trả lời:
Diện tích thiết diện là \[S\left( x \right) = {\left( {x + 1} \right)^2}{e^{2x}}.\]
Thể tích của vật thể \((T)\) là \[V = \int\limits_0^2 {S\left( x \right)\,} dx = \int\limits_0^2 {{{\left( {x + 1} \right)}^2}{e^{2x}}\,} dx\]
Đặt \(\left\{ {\begin{array}{*{20}{l}}{u = {{\left( {x + 1} \right)}^2}}\\{\;{\rm{d}}v = {e^{2x}}\;{\rm{d}}x}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{d}}u = 2\left( {x + 1} \right){\rm{d}}x}\\{v = \frac{1}{2}{e^{2x}}}\end{array}} \right.} \right.\)
\( \Rightarrow V = \left. {\frac{1}{2}{{\left( {x + 1} \right)}^2}{e^{2x}}} \right|_0^2 - \int\limits_0^2 {\left( {x + 1} \right){e^{2x}}\,} dx\)\( = \frac{{9{e^4} - 1}}{2} - \left( {\left. {\frac{{x + 1}}{2}{e^{2x}}} \right|_0^2 - \frac{1}{2}\int\limits_0^2 {{e^{2x}}\,} dx} \right)\)
\( = \frac{{9{e^4} - 1}}{2} - \frac{{3{e^4} - 1}}{2} + \left. {\frac{1}{4}{e^{2x}}} \right|_0^2 = 3{e^4} + \frac{1}{4}{e^4} - \frac{1}{4} = \frac{{13{e^4} - 1}}{4}{\rm{. }}\)Chọn B.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[f'\left( 1 \right) = 3 \Rightarrow a + b = 3\]. (1)
Hàm số có đạo hàm liên tục trên khoảng \[\left( {0\,;\,\, + \infty } \right)\], các điểm \(x = 1,x = \frac{1}{2}\) đều thuộc \((0; + \infty )\) nên
\(f(x) = \int {f'} (x){\rm{d}}x = \int {\left( {a{x^2} + \frac{b}{{{x^3}}}} \right)} \,\,{\rm{d}}x = \frac{{a{x^3}}}{3} - \frac{b}{{2{x^2}}} + C.\)
• \(f\left( 1 \right) = 2 \Leftrightarrow \frac{a}{3} - \frac{b}{2} + C = 2\). (2)
• \(f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}} \Rightarrow \frac{a}{{24}} - 2b + C = - \frac{1}{{12}}\). (3).
Từ (1), (2) và (3) ta được hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + b = 3}\\{\frac{a}{3} - \frac{b}{2} + C = 2}\\{\frac{a}{{24}} - 2b + C = - \frac{1}{{12}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 1}\\{C = \frac{{11}}{6}}\end{array} \Rightarrow 2a + b = 2 \cdot 2 + 1 = 5.} \right.} \right.\)
Chọn C.
Lời giải
Gọi I là tâm của mặt cầu \((S),\,\,I \in d \Rightarrow I\left( {1 + t\,;\,\,1 + 2t\,;\,\, - 2 + t} \right).\)
\( \Rightarrow \overrightarrow {AI} = \left( {3 + t\,;\,\, - 3 + 2t\,;\,\, - 3 + t} \right)\,;\,\,\overrightarrow {BI} = \left( { - 1 + t\,;\,\,1 + 2t\,;\,\, - 5 + t} \right)\)
Vì (S) đi qua \[A,\,\,B\] nên ta có \(IA = IB \Leftrightarrow I{A^2} = I{B^2}\)
\[ \Leftrightarrow {(3 + t)^2} + {\left( { - 3 + 2t} \right)^2} + {\left( { - 3 + t} \right)^2} = {\left( { - 1 + t} \right)^2} + {\left( {1 + 2t} \right)^2} + {\left( { - 5 + t} \right)^2}\]
\( \Leftrightarrow 4t = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow {IA} = \left( {3\,;\,\, - 3\,;\,\, - 3} \right).\)
Vậy bán kính mặt cầu \[(S)\] là \[R = IA = \sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} = 3\sqrt 3 .\] Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.