Câu hỏi:

19/06/2024 172 Lưu

Media VietJack

Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy, một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính đáy của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Bỏ qua bề dày của lớp vỏ thủy tinh,  tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi R là bán kính đáy của hình trụ \( \Rightarrow \) Chiều cao của hình trụ là \(h = 6R.\)

Suy ra thể tích của khối trụ ban đầu là \(V = \pi {R^2}h = 6\pi {R^3}.\)

Theo bài ra, thể tích của khối cầu trong hình là \({V_1} = \frac{4}{3}\pi {R^3}.\)

Khối nón trong hình có bán kính đáy \(r = R\); chiều cao \({h_0} = h - 2R = 4R.\)

Suy ra thể tích của khối nón là \({V_2} = \frac{1}{3}\pi r_0^2h = \frac{4}{3}\pi {R^3}.\)

Do đó, thể tích nước tràn ra ngoài cốc là \({V_0} = {V_1} + {V_2} = \frac{8}{3}\pi {R^3}.\)

Vậy tỉ số cần tìm là \(\frac{{V - {V_0}}}{V} = \frac{{6\pi {R^3} - \frac{8}{3}\pi {R^3}}}{{6\pi {R^3}}} = \frac{5}{9}.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[f'\left( 1 \right) = 3 \Rightarrow a + b = 3\].   (1)

Hàm số có đạo hàm liên tục trên khoảng \[\left( {0\,;\,\, + \infty } \right)\], các điểm \(x = 1,x = \frac{1}{2}\) đều thuộc \((0; + \infty )\) nên

\(f(x) = \int {f'} (x){\rm{d}}x = \int {\left( {a{x^2} + \frac{b}{{{x^3}}}} \right)} \,\,{\rm{d}}x = \frac{{a{x^3}}}{3} - \frac{b}{{2{x^2}}} + C.\)

• \(f\left( 1 \right) = 2 \Leftrightarrow \frac{a}{3} - \frac{b}{2} + C = 2\).                                                         (2)

• \(f\left( {\frac{1}{2}} \right) =  - \frac{1}{{12}} \Rightarrow \frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}\).   (3).

Từ (1), (2) và (3) ta được hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + b = 3}\\{\frac{a}{3} - \frac{b}{2} + C = 2}\\{\frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 1}\\{C = \frac{{11}}{6}}\end{array} \Rightarrow 2a + b = 2 \cdot 2 + 1 = 5.} \right.} \right.\)

Chọn C.

Lời giải

Gọi I là tâm của mặt cầu \((S),\,\,I \in d \Rightarrow I\left( {1 + t\,;\,\,1 + 2t\,;\,\, - 2 + t} \right).\)

\( \Rightarrow \overrightarrow {AI}  = \left( {3 + t\,;\,\, - 3 + 2t\,;\,\, - 3 + t} \right)\,;\,\,\overrightarrow {BI}  = \left( { - 1 + t\,;\,\,1 + 2t\,;\,\, - 5 + t} \right)\)

Vì (S) đi qua \[A,\,\,B\] nên ta có \(IA = IB \Leftrightarrow I{A^2} = I{B^2}\)

\[ \Leftrightarrow {(3 + t)^2} + {\left( { - 3 + 2t} \right)^2} + {\left( { - 3 + t} \right)^2} = {\left( { - 1 + t} \right)^2} + {\left( {1 + 2t} \right)^2} + {\left( { - 5 + t} \right)^2}\]

\( \Leftrightarrow 4t = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow {IA}  = \left( {3\,;\,\, - 3\,;\,\, - 3} \right).\)

Vậy bán kính mặt cầu \[(S)\] là \[R = IA = \sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}}  = 3\sqrt 3 .\] Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP