Câu hỏi:
19/06/2024 45Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy, một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính đáy của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Bỏ qua bề dày của lớp vỏ thủy tinh, tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi R là bán kính đáy của hình trụ \( \Rightarrow \) Chiều cao của hình trụ là \(h = 6R.\)
Suy ra thể tích của khối trụ ban đầu là \(V = \pi {R^2}h = 6\pi {R^3}.\)
Theo bài ra, thể tích của khối cầu trong hình là \({V_1} = \frac{4}{3}\pi {R^3}.\)
Khối nón trong hình có bán kính đáy \(r = R\); chiều cao \({h_0} = h - 2R = 4R.\)
Suy ra thể tích của khối nón là \({V_2} = \frac{1}{3}\pi r_0^2h = \frac{4}{3}\pi {R^3}.\)
Do đó, thể tích nước tràn ra ngoài cốc là \({V_0} = {V_1} + {V_2} = \frac{8}{3}\pi {R^3}.\)
Vậy tỉ số cần tìm là \(\frac{{V - {V_0}}}{V} = \frac{{6\pi {R^3} - \frac{8}{3}\pi {R^3}}}{{6\pi {R^3}}} = \frac{5}{9}.\) Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) thỏa mãn các điều kiện \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'(1) = 3,\,\,f\left( 1 \right) = 2\) và \(f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó, giá trị của \(2a + b\) bằng
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2021\,;\,\,2021} \right]\) để đồ thị hàm số \(y = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Câu 3:
Câu 4:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Thời gian chạy qua tóc mẹ
Một màu trắng đến nôn nao
Lưng mẹ cứ còng dần xuống
Cho con ngày một thêm cao.
(Trong lời mẹ hát – Trương Nam Hương)
Câu 5:
Cho hình chóp \[S.ABCD.\] Gọi \[I,\,\,J,\,\,K,\,\,H\] lần lượt là trung điểm các cạnh \[SA,\,\,SB,\,\,SC,\,\]\[\,SD.\] Tính thể tích khối chóp \[S.ABCD\] biết thể tích khối chóp \[S.IJKH\] bằng 1.
Câu 6:
Số giao điểm của đồ thị hàm số \(\sqrt {{x^4} - 4} = y + 5\) và đường thẳng \(y = x\) là
Câu 7:
Trong không gian \[Oxyz,\] cho hai điểm \[A\left( {3\,;\,\,1\,;\,\,2} \right),\,\,B\left( { - 3\,;\,\, - 1\,;\,\,0} \right)\] và mặt phẳng \((P):x + y + 3z - 14 = 0.\) Điểm \(M\) thuộc mặt phẳng \((P)\) sao cho \(\Delta MAB\) vuông tại \[M.\] Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right).\)
về câu hỏi!