VietJack
Khóa học đang cập nhật!Câu hỏi:
19/06/2024 162Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x}{2} = \frac{y}{{ - 1}} = \frac{{z - 1}}{{ - 1}}\) và hai điểm \(A\left( { - 1\,;\,\, - 1\,;\,\,6} \right),\,\,B\left( {2\,;\,\, - 1\,;\,\,0} \right).\) Biết điểm \(M\) thuộc \(\Delta \) sao cho biểu thức \(M{A^2} + 3M{B^2}\) đạt giá trị nhỏ nhất là \({T_{\min }}.\) Khi đó giá trị của \({T_{\min }}\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đường thẳng \(\Delta \) đi qua điểm \(M\left( {0\,;\,\,0\,;\,\,1} \right)\) và có vectơ chỉ phương \[\vec u = \left( {2\,;\,\, - 1\,;\,\, - 1} \right)\] nên có phương trình tham số là \(\left\{ {\begin{array}{*{20}{l}}{x = 2t}\\{y = - t}\\{z = 1 - t}\end{array}(t \in \mathbb{R})} \right..\)
Vì \(M\) thuộc đường thẳng \(\Delta \) nên \(M\left( {2t\,;\,\, - t\,;\,\,1 - t} \right).\)
Ta có \[M{A^2} + 3M{B^2} = {\left( {2t + 1} \right)^2} + {\left( {t - 1} \right)^2} + {\left( {t + 5} \right)^2} + 3\left[ {{{\left( {2t - 2} \right)}^2} + {{\left( {t - 1} \right)}^2} + {{\left( {t - 1} \right)}^2}} \right]\]
\( = 24{t^2} - 24t + 45 = 6\left( {4{t^2} - 4t + \frac{{45}}{6}} \right)\)\( = 6\left[ {{{\left( {2t - 1} \right)}^2} + \frac{{39}}{6}} \right] = 6{\left( {2t - 1} \right)^2} + 39 \ge 39,\,\,\forall t \in \mathbb{R}.\)
Dấu bằng xảy ra khi \(t = \frac{1}{2}\) hay \(M\left( {1\,;\,\, - \frac{1}{2}\,;\,\,\frac{1}{2}} \right).\)
Vậy \({T_{\min }} = 39.\) Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) thỏa mãn các điều kiện \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'(1) = 3,\,\,f\left( 1 \right) = 2\) và \(f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó, giá trị của \(2a + b\) bằng
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2021\,;\,\,2021} \right]\) để đồ thị hàm số \(y = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Câu 3:
Câu 4:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Thời gian chạy qua tóc mẹ
Một màu trắng đến nôn nao
Lưng mẹ cứ còng dần xuống
Cho con ngày một thêm cao.
(Trong lời mẹ hát – Trương Nam Hương)
Câu 5:
Cho hình chóp \[S.ABCD.\] Gọi \[I,\,\,J,\,\,K,\,\,H\] lần lượt là trung điểm các cạnh \[SA,\,\,SB,\,\,SC,\,\]\[\,SD.\] Tính thể tích khối chóp \[S.ABCD\] biết thể tích khối chóp \[S.IJKH\] bằng 1.
Câu 6:
Số giao điểm của đồ thị hàm số \(\sqrt {{x^4} - 4} = y + 5\) và đường thẳng \(y = x\) là
Câu 7:
Trong không gian \[Oxyz,\] cho hai điểm \[A\left( {3\,;\,\,1\,;\,\,2} \right),\,\,B\left( { - 3\,;\,\, - 1\,;\,\,0} \right)\] và mặt phẳng \((P):x + y + 3z - 14 = 0.\) Điểm \(M\) thuộc mặt phẳng \((P)\) sao cho \(\Delta MAB\) vuông tại \[M.\] Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right).\)
về câu hỏi!