Câu hỏi:

19/06/2024 777 Lưu

Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x}{2} = \frac{y}{{ - 1}} = \frac{{z - 1}}{{ - 1}}\) và hai điểm \(A\left( { - 1\,;\,\, - 1\,;\,\,6} \right),\,\,B\left( {2\,;\,\, - 1\,;\,\,0} \right).\) Biết điểm \(M\) thuộc \(\Delta \) sao cho biểu thức \(M{A^2} + 3M{B^2}\) đạt giá trị nhỏ nhất là \({T_{\min }}.\) Khi đó giá trị của \({T_{\min }}\) bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \(\Delta \) đi qua điểm \(M\left( {0\,;\,\,0\,;\,\,1} \right)\) và có vectơ chỉ phương \[\vec u = \left( {2\,;\,\, - 1\,;\,\, - 1} \right)\] nên có phương trình tham số là \(\left\{ {\begin{array}{*{20}{l}}{x = 2t}\\{y =  - t}\\{z = 1 - t}\end{array}(t \in \mathbb{R})} \right..\)

Vì \(M\) thuộc đường thẳng \(\Delta \) nên \(M\left( {2t\,;\,\, - t\,;\,\,1 - t} \right).\)

Ta có \[M{A^2} + 3M{B^2} = {\left( {2t + 1} \right)^2} + {\left( {t - 1} \right)^2} + {\left( {t + 5} \right)^2} + 3\left[ {{{\left( {2t - 2} \right)}^2} + {{\left( {t - 1} \right)}^2} + {{\left( {t - 1} \right)}^2}} \right]\]

\( = 24{t^2} - 24t + 45 = 6\left( {4{t^2} - 4t + \frac{{45}}{6}} \right)\)\( = 6\left[ {{{\left( {2t - 1} \right)}^2} + \frac{{39}}{6}} \right] = 6{\left( {2t - 1} \right)^2} + 39 \ge 39,\,\,\forall t \in \mathbb{R}.\)

Dấu bằng xảy ra khi \(t = \frac{1}{2}\) hay \(M\left( {1\,;\,\, - \frac{1}{2}\,;\,\,\frac{1}{2}} \right).\)

Vậy \({T_{\min }} = 39.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[f'\left( 1 \right) = 3 \Rightarrow a + b = 3\].   (1)

Hàm số có đạo hàm liên tục trên khoảng \[\left( {0\,;\,\, + \infty } \right)\], các điểm \(x = 1,x = \frac{1}{2}\) đều thuộc \((0; + \infty )\) nên

\(f(x) = \int {f'} (x){\rm{d}}x = \int {\left( {a{x^2} + \frac{b}{{{x^3}}}} \right)} \,\,{\rm{d}}x = \frac{{a{x^3}}}{3} - \frac{b}{{2{x^2}}} + C.\)

• \(f\left( 1 \right) = 2 \Leftrightarrow \frac{a}{3} - \frac{b}{2} + C = 2\).                                                         (2)

• \(f\left( {\frac{1}{2}} \right) =  - \frac{1}{{12}} \Rightarrow \frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}\).   (3).

Từ (1), (2) và (3) ta được hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + b = 3}\\{\frac{a}{3} - \frac{b}{2} + C = 2}\\{\frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 1}\\{C = \frac{{11}}{6}}\end{array} \Rightarrow 2a + b = 2 \cdot 2 + 1 = 5.} \right.} \right.\)

Chọn C.

Lời giải

Biện pháp tu từ được sử dụng trong câu thơ “Áo chàm đưa buổi phân li” là hoán dụ (áo chàm). Hình ảnh “áo chàm” không đơn thuần dùng để chỉ màu áo quen thuộc của người dân Việt Bắc (áo nhuộm màu chàm) mà còn là hình ảnh nói thay cho toàn thể nhân dân Việt Bắc trong ngày đưa tiễn những đồng chí cách mạng về xuôi. Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP