Câu hỏi:
19/06/2024 72Cho hai số thực \(a > 1\,,\,\,b > 1\) và phương trình \({a^{{x^2}}} \cdot {b^{x + 1}} = 1\) có nghiệm thực. Giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {ab} \right) + \frac{4}{{{{\log }_a}b}}\) bằng
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có \({a^{{x^2}}} \cdot {b^{x + 1}} = 1 \Leftrightarrow {\log _a}\left( {{a^{{x^2}}} \cdot {b^{x + 1}}} \right) = {\log _a}1\)
\( \Leftrightarrow {\log _a}{a^{{x^2}}} + {\log _a}{b^{x + 1}} = 0 \Leftrightarrow {x^2} + \left( {x + 1} \right){\log _a}b = 0\)
\( \Leftrightarrow {x^2} + {\log _a}b \cdot x + {\log _a}b = 0\, & (*)\)
Phương trình \((*)\) có nghiệm \( \Leftrightarrow \Delta = {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b \ge 0\)
Mà \(a > 1\,,\,\,b > 1\) nên \({\log _a}b > 0\) suy ra \({\log _a}b \ge 4.\)
Đặt \(t = {\log _a}b \ge 4\), khi đó \(P = {\log _a}a + {\log _a}b + \frac{4}{{{{\log }_a}b}}\)
\( = 1 + t + \frac{4}{t} = f\left( t \right) \Rightarrow f'\left( t \right) = 1 - \frac{4}{{{t^2}}} = \frac{{{t^2} - 4}}{{{t^2}}} > 0\,;\,\,\forall t \ge 4\)
Suy ra \(f\left( t \right)\) là hàm số đồng biến trên \(\left( {4\,;\,\, + \infty } \right)\)
Vậy \(\min P = {\min _{\left[ {4\,;\,\, + \infty } \right)}}f\left( t \right) = f\left( 4 \right) = 6.\) Đáp án: 6.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) thỏa mãn các điều kiện \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'(1) = 3,\,\,f\left( 1 \right) = 2\) và \(f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó, giá trị của \(2a + b\) bằng
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2021\,;\,\,2021} \right]\) để đồ thị hàm số \(y = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Câu 3:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Thời gian chạy qua tóc mẹ
Một màu trắng đến nôn nao
Lưng mẹ cứ còng dần xuống
Cho con ngày một thêm cao.
(Trong lời mẹ hát – Trương Nam Hương)
Câu 4:
Câu 5:
Đọc đoạn trích sau và trả lời câu hỏi:
Tiếng ai tha thiết bên cồn
Bâng khuâng trong dạ, bồn chồn bước đi
Áo chàm đưa buổi phân ly
Cầm tay nhau biết nói gì hôm nay...
(Việt Bắc – Tố Hữu)
Câu 6:
Ở ruồi giấm, alen A quy định thân xám trội hoàn toàn so với alen a quy định thân đen; alen B quy định cánh dài trội hoàn toàn so với alen b quy định cánh cụt; hai cặp gen này cùng nằm trên một cặp nhiễm sắc thể thường. Alen D quy định mắt đỏ trội hoàn toàn so với alen d quy định mắt trắng; gen này nằm ở vùng không tương đồng trên nhiễm sắc thể giới tính X. Cho ruồi đực và ruồi cái (P) đều có thân xám, cánh dài, mắt đỏ giao phối với nhau, thu được F1 có 5% ruồi đực thân đen, cánh cụt, mắt trắng. Biết rằng không xảy ra đột biến. Theo lí thuyết, tỉ lệ ruồi cái thân đen, cánh cụt, mắt đỏ ở F1 chiếm tỉ lệ là bao nhiêu phần trăm?
Đáp án: ……….
Câu 7:
Trong không gian \[Oxyz,\] cho hai điểm \[A\left( {3\,;\,\,1\,;\,\,2} \right),\,\,B\left( { - 3\,;\,\, - 1\,;\,\,0} \right)\] và mặt phẳng \((P):x + y + 3z - 14 = 0.\) Điểm \(M\) thuộc mặt phẳng \((P)\) sao cho \(\Delta MAB\) vuông tại \[M.\] Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right).\)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
về câu hỏi!