Câu hỏi:

19/06/2024 173

Cho tứ diện \[ABCD\] có thể tích bằng 18. Gọi \({A_1}\) là trọng tâm của tam giác \(BCD;\,\,(P)\) là mặt phẳng qua \(A\) sao cho góc giữa \[\left( P \right)\] và mặt phẳng \(\left( {BCD} \right)\) bằng \(60^\circ .\) Các đường thẳng qua \[B,\,\,C,\,\,D\] song song với \(A{A_1}\) cắt \[\left( P \right)\] lần lượt tại \({B_1},\,\,{C_1},\,\,{D_1}.\) Thể tích khối tứ diện \({A_1}{B_1}{C_1}{D_1}\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Từ giả thiết \({A_1}\) là trọng tâm tam giác \[BCD\]

Suy ra \(A\) cũng là trọng tâm tam giác \({B_1}{C_1}{D_1}.\)

Do đó \({V_{A.BCD}} = 3{V_{A.{A_1}BC}} = 3{V_{B.A{A_1}C}}\) và

 \({V_{{A_1}.{B_1}{C_1}{D_1}}} = 3{V_{{A_1}.A{B_1}{C_1}}} = 3{V_{{B_1}.A{A_1}{C_1}}}.\)

Mặt khác do quan hệ song song nên                                     

 \[\left\{ {\begin{array}{*{20}{l}}{{d_{\left( {B;\,\,\left( {A{A_1}C{C_1}} \right)} \right)}} = {d_{\left( {{B_1};\,\,\left( {A{A_1}C{C_1}} \right)} \right)}}}\\{{S_{A{A_1}C}} = {S_{A{A_1}{C_1}}}}\end{array} \Rightarrow {V_{B.A{A_1}C}} = {V_{{B_1}.A{A_1}{C_1}}}} \right.\]

Vậy nên \({V_{{A_1}.{B_1}{C_1}{D_1}}} = {V_{A.BCD}} = 18.\)
Đáp án: 18.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[f'\left( 1 \right) = 3 \Rightarrow a + b = 3\].   (1)

Hàm số có đạo hàm liên tục trên khoảng \[\left( {0\,;\,\, + \infty } \right)\], các điểm \(x = 1,x = \frac{1}{2}\) đều thuộc \((0; + \infty )\) nên

\(f(x) = \int {f'} (x){\rm{d}}x = \int {\left( {a{x^2} + \frac{b}{{{x^3}}}} \right)} \,\,{\rm{d}}x = \frac{{a{x^3}}}{3} - \frac{b}{{2{x^2}}} + C.\)

• \(f\left( 1 \right) = 2 \Leftrightarrow \frac{a}{3} - \frac{b}{2} + C = 2\).                                                         (2)

• \(f\left( {\frac{1}{2}} \right) =  - \frac{1}{{12}} \Rightarrow \frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}\).   (3).

Từ (1), (2) và (3) ta được hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + b = 3}\\{\frac{a}{3} - \frac{b}{2} + C = 2}\\{\frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 1}\\{C = \frac{{11}}{6}}\end{array} \Rightarrow 2a + b = 2 \cdot 2 + 1 = 5.} \right.} \right.\)

Chọn C.

Lời giải

Gọi I là tâm của mặt cầu \((S),\,\,I \in d \Rightarrow I\left( {1 + t\,;\,\,1 + 2t\,;\,\, - 2 + t} \right).\)

\( \Rightarrow \overrightarrow {AI}  = \left( {3 + t\,;\,\, - 3 + 2t\,;\,\, - 3 + t} \right)\,;\,\,\overrightarrow {BI}  = \left( { - 1 + t\,;\,\,1 + 2t\,;\,\, - 5 + t} \right)\)

Vì (S) đi qua \[A,\,\,B\] nên ta có \(IA = IB \Leftrightarrow I{A^2} = I{B^2}\)

\[ \Leftrightarrow {(3 + t)^2} + {\left( { - 3 + 2t} \right)^2} + {\left( { - 3 + t} \right)^2} = {\left( { - 1 + t} \right)^2} + {\left( {1 + 2t} \right)^2} + {\left( { - 5 + t} \right)^2}\]

\( \Leftrightarrow 4t = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow {IA}  = \left( {3\,;\,\, - 3\,;\,\, - 3} \right).\)

Vậy bán kính mặt cầu \[(S)\] là \[R = IA = \sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}}  = 3\sqrt 3 .\] Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Nguyên nhân chủ yếu tạo nên sự khác biệt về trình độ phát triển kinh tế-xã hội giữa nhóm nước phát triển với đang phát triển là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay