Câu hỏi:

20/06/2024 1,407

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol nên có phương trình dạng: \((P):y = g\left( x \right) = {\rm{a}}{x^2} + bx + c\).

• Vì \((P)\) có đỉnh \(I\left( {2\,;\,\, - 1} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{\frac{{ - b}}{{2a}} = 2}\\{g(2) =  - 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - b = 4a}\\{4a + 2b + c =  - 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4a + b = 0}\\{4a + 2b + c =  - 1}\end{array}.} \right.} \right.} \right.\)

• Vì \((P)\) đi qua điểm \(A\left( {1\,;\,\,2} \right)\) nên \(g(1) = 2 \Leftrightarrow a + b + c = 2.\)

Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{4a + b = 0}\\{4a + 2b + c =  - 1}\\{a + b + c = 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3}\\{b =  - 12}\\{c = 11}\end{array}} \right.} \right.\) nên \(g(x) = 3{x^2} - 12x + 11.\)

Ta có \(f'\left( {2x + 3} \right) \le 0 \Leftrightarrow f'\left( {2x + 3} \right) + 2 \le 2 \Leftrightarrow 1 \le x \le 3.\)

Đặt \(t = 2x + 3 \Leftrightarrow x = \frac{{t - 3}}{2}\) khi đó \(f'\left( t \right) \le 0 \Leftrightarrow 1 \le \frac{{t - 3}}{2} \le 3 \Leftrightarrow 5 \le t \le 9.\)

Vậy \(y = f\left( x \right)\) nghịch biến trên khoảng \[\left( {5\,;\,\,9} \right).\] Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right)\left( {{x^2} + 2mx + 5} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?

Xem đáp án » 20/06/2024 8,341

Câu 2:

Đông Nam Á lục địa có nhiều đồng bằng phù sa màu mỡ là do 

Xem đáp án » 02/07/2024 2,700

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 12{x^2} + 2,\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3.\) Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\), khi đó \(F\left( 1 \right)\) bằng

Xem đáp án » 20/06/2024 1,964

Câu 4:

Phương trình \({\log _x}2 + {\log _2}x = \frac{5}{2}\) có hai nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right).\) Khi đó, giá trị của \(x_1^2 + {x_2}\) bằng

Xem đáp án » 20/06/2024 1,433

Câu 5:

Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có \(f'\left( { - 2} \right) = 3\) và \(g'\left( { - 4} \right) = 1.\) Đạo hàm của hàm số \(y = 2f\left( x \right) - 3g\left( {2x} \right)\) tại điểm \(x =  - 2\) bằng

Xem đáp án » 20/06/2024 1,312

Câu 6:

Năm 2020, một hãng xe ô tô niêm yết giá bán loại xe X là \[850\,\,000\,\,000\] đồng và dự định trong 10 năm tiếp theo, mỗi năm giảm \[2\% \] giá bán của năm liền trước. Theo dự định đó, năm 2025 hãng xe ô tô niêm yết giá bán xe X là bao nhiêu (kết quả làm tròn đến hàng nghìn)?

Xem đáp án » 20/06/2024 1,204

Bình luận


Bình luận