Câu hỏi:
20/06/2024 2,310Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol với tọa độ đỉnh \(I\left( {2\,;\,\, - 1} \right)\) và đi qua điểm \(A\left( {1\,;\,\,2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng nào dưới đây?
Quảng cáo
Trả lời:
Xét hàm số \(g\left( x \right) = f'\left( {2x + 3} \right) + 2\) có đồ thị là một parabol nên có phương trình dạng: \((P):y = g\left( x \right) = {\rm{a}}{x^2} + bx + c\).
• Vì \((P)\) có đỉnh \(I\left( {2\,;\,\, - 1} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{\frac{{ - b}}{{2a}} = 2}\\{g(2) = - 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - b = 4a}\\{4a + 2b + c = - 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4a + b = 0}\\{4a + 2b + c = - 1}\end{array}.} \right.} \right.} \right.\)
• Vì \((P)\) đi qua điểm \(A\left( {1\,;\,\,2} \right)\) nên \(g(1) = 2 \Leftrightarrow a + b + c = 2.\)
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{4a + b = 0}\\{4a + 2b + c = - 1}\\{a + b + c = 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3}\\{b = - 12}\\{c = 11}\end{array}} \right.} \right.\) nên \(g(x) = 3{x^2} - 12x + 11.\)
Ta có \(f'\left( {2x + 3} \right) \le 0 \Leftrightarrow f'\left( {2x + 3} \right) + 2 \le 2 \Leftrightarrow 1 \le x \le 3.\)
Đặt \(t = 2x + 3 \Leftrightarrow x = \frac{{t - 3}}{2}\) khi đó \(f'\left( t \right) \le 0 \Leftrightarrow 1 \le \frac{{t - 3}}{2} \le 3 \Leftrightarrow 5 \le t \le 9.\)
Vậy \(y = f\left( x \right)\) nghịch biến trên khoảng \[\left( {5\,;\,\,9} \right).\] Chọn A.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm số \(f\left( x \right)\) có đúng một điểm cực trị khi và chỉ khi tam thức \(g\left( x \right) = {x^2} + 2mx + 5\) vô nghiệm hoặc có hai nghiệm phân biệt trong đó một nghiệm là \(x = - 1\), hoặc \(g\left( x \right)\) có nghiệm kép.
Tức là \(\left[ {\begin{array}{*{20}{l}}{{{\Delta '}_g} < 0}\\{\left\{ {\begin{array}{*{20}{l}}{g( - 1) = 0}\\{\Delta ' > 0}\end{array}} \right.}\\{{{\Delta '}_g} = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m^2} - 5 < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2m + 6 = 0}\\{{m^2} - 5 > 0}\end{array}} \right.}\\{{m^2} - 5 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - \sqrt 5 \le m \le \sqrt 5 }\\{m = 3}\end{array}} \right.} \right.} \right..\)
Do đó tập các giá trị nguyên thỏa mãn yêu cầu bài toán là \(S = \left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,1\,;\,\,2\,;\,\,3} \right\}.\)
Đáp án: 6.
Lời giải
Năm 2021 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot \left( {1 - 0,02} \right) = 850 \cdot 0,98\) (triệu đồng).
Năm 2022 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^2}\) (triệu đồng).
Năm 2023 hãng xe ô tô niêm yết giá bán xe X là: \[850 \cdot 0,{98^3}\] (triệu đồng).
Năm 2024 hãng xe ô tô niêm yết giá bán xe X là: \(850 \cdot 0,{98^4}\) (triệu đồng).
Năm 2025 hãng xe ô tô niêm yết giá bán xe X là:
\(850 \cdot 0,{98^5} = 768,3326 \approx 768,333\) (triệu đồng).
Vậy 2025 hãng xe ô tô niêm yết giá bán xe X là \[768\,\,333\,\,000\] đồng. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.