Câu hỏi:

21/06/2024 173 Lưu

nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x - {{\left( {y + 1} \right)}^2} = 0}\\{\left| {x - 2} \right| - y - 1 = 0}\end{array}} \right.\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x - {{\left( {y + 1} \right)}^2} = 0}\\{\left| {x - 2} \right| - y - 1 = 0}\end{array}} \right.\).

Ta có \((2) \Leftrightarrow y + 1 = \left| {x - 2} \right| \Leftrightarrow {\left( {y + 1} \right)^2} = {\left( {x - 2} \right)^2}\).

Thay vào (1) ta được \(x - {\left( {x - 1} \right)^2} = 0 \Leftrightarrow {x^2} - 2x + 1 - x = 0\)\( \Leftrightarrow {x^2} - 3x + 1 = 0 \Leftrightarrow x = \frac{{3 \pm \sqrt 5 }}{2}{\rm{. }}\)

• Với \(x = \frac{{3 - \sqrt 5 }}{2}\) thì \(y = |x - 2| - 1 = \left| {\frac{{3 - \sqrt 5 }}{2} - 2} \right| - 1 = \frac{{1 + \sqrt 5 }}{2} - 1 = \frac{{\sqrt 5  - 1}}{2}{\rm{.}}\)

• Với\(x = \frac{{3 + \sqrt 5 }}{2}\) thì \(y = |x - 2| - 1 = \left| {\frac{{3 + \sqrt 5 }}{2} - 2} \right| - 1 = \frac{{\sqrt 5  - 1}}{2} - 1 = \frac{{\sqrt 5  - 3}}{2}{\rm{.}}\)

Vậy hệ phương trình đã cho có 2 cặp nghiệm. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP