Câu hỏi:

21/06/2024 177 Lưu

Media VietJack

Các điểm \[M,\,\,N,\,\,P,\,\,Q\] trong hình vẽ bên là điểm biểu diễn lần lượt của các số phức \[{z_1},\,\,{z_2},\,\,{z_3},\,\,{z_4}.\] Khi đó số phức \(w = 3{z_1} + {z_2} + {z_3} + {z_4}\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \({z_1} =  - 3 + 2i\,,\,\,{z_2} =  - 2 - i\,,\,\,{z_3} = 3 + i\,,\,\,{z_4} = 2 - 2i.\)

Suy ra \(w = 3{z_1} + {z_2} + {z_3} + {z_4} = 3\left( { - 3 + 2i} \right) + \left( { - 2 - i} \right) + \left( {3 + i} \right) + \left( {2 - 2i} \right)\)

\( =  - 9 + 6i - 2 - i + 3 + i + 2 - 2i = \left( { - 9 - 2 + 3 + 2} \right) + \left( {6 - 1 + 1 - 2} \right)i =  - 6 + 4i{\rm{. }}\)Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP