Trong không gian \[Oxyz,\] cho ba điểm \[M\left( {1\,;\,\,0\,;\,\,0} \right),\,\,N\left( {0\,;\,\,2\,;\,\,0} \right),\,\,P\left( {0\,;\,\,0\,;\,\,3} \right).\] Mặt phẳng \(\left( {MNP} \right)\) có phương trình là
A. \(6x + 3y + 2z - 6 = 0.\)
B. \(6x + 3y + 2z + 1 = 0.\)
Quảng cáo
Trả lời:

Phương trình mặt phẳng \(\left( {MNP} \right)\) có dạng \(ax + by + cz + 1 = 0.\)
Vì \(\left( {MNP} \right)\) đi qua ba điểm \[M,\,\,N,\,\,P\] nên ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + 1 = 0}\\{2b + 1 = 0}\\{3c + 1 = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 1}\\{b = - \frac{1}{2}}\\{c = - \frac{1}{3}}\end{array}} \right..\)
Suy ra phương trình \(\left( {MNP} \right): - x - \frac{1}{2}y - \frac{1}{3}z + 1 = 0 \Leftrightarrow 6x + 3y + 2z - 6 = 0.\)
Hoặc viết theo phương trình đoạn chắn chắn là \(\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1 \Leftrightarrow 6x + 3y + 2z - 6 = 0.{\rm{ }}\)
Chọn A.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).
Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).
Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)
Ta có bảng biến thiên của \(f\left( x \right)\) như sau:
\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]
Đáp án: 24.
Câu 2
Lời giải
Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.