Số nghiệm nguyên của bất phương trình \(x + 1 \ge \sqrt {2\left( {{x^2} - 1} \right)} \) là
Số nghiệm nguyên của bất phương trình \(x + 1 \ge \sqrt {2\left( {{x^2} - 1} \right)} \) là
A. 3
B. 5
C. 4
D. 2
Quảng cáo
Trả lời:
Ta có: \(x + 1 \ge \sqrt {2\left( {{x^2} - 1} \right)} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} - 1 \ge 0}\\{x + 1 \ge 0}\\{{{(x + 1)}^2} \ge 2\left( {{x^2} - 1} \right)}\end{array}} \right.\)
\(\begin{array}{l}\\\left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\x \ge - 1\\{x^2} + 2x + 1 \ge 2\left( {{x^2} - 1} \right)\end{array} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.}\\{x \ge - 1}\\{{x^2} - 2x - 3 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.}\\{x \ge - 1}\\{ - 1 \le x \le 3}\end{array}} \right.\end{array}\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{1 \le x \le 3}\end{array}} \right.\).
Vậy có 4 giá trị nguyên của \(x\) thỏa mãn bất phương trình. Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).
Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).
Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)
Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]
Đáp án: 24.
Câu 2
Lời giải
Doanh thu của công ty tháng 7 là: \({R_7} = 6 \cdot \left( {1 + 0,1} \right)\) (tỷ đồng).
Doanh thu của công ty tháng 8 là: \({R_8} = 6 \cdot {\left( {1 + 0,1} \right)^2}\) (tỷ đồng).
......
Doanh thu của công ty tháng 12 là: \({R_{12}} = 6 \cdot {\left( {1 + 0,1} \right)^6}\) (tỷ đồng).
Tổng doanh thu từ tháng 6 là: \(TR = 6 \cdot \left( {1 + 1,1 + 1,{1^2} + 1,{1^3} + \ldots + 1,{1^6}} \right) = 56,92\) (tỷ đồng).
Suy ra, chỉ tiêu của công ty là: \(T = 56,92 - 6 + 20 = 70,92 \approx 70,9\) (tỷ đồng). Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
