Câu hỏi:

21/06/2024 202 Lưu

Gọi \({x_0}\) là nghiệm âm lớn nhất của \(\sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x.\) Khẳng định nào dưới đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình \( \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = \sin 7x - \sqrt 3 \cos 7x\)

\( \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} \right) = \sin \left( {7x - \frac{\pi }{3}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{9x - \frac{\pi }{3} = 7x - \frac{\pi }{3} + k2\pi }\\{9x - \frac{\pi }{3} = \pi  - \left( {7x - \frac{\pi }{3}} \right) + k2\pi }\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = k\pi }\\{x = \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8}}\end{array}(k \in \mathbb{Z}).} \right.\)

• TH1: Với \(x = k\pi  < 0 \Leftrightarrow k < 0\) mà \(k \in \mathbb{Z}\) nên \({k_{\max }} =  - 1 \Rightarrow x =  - \pi .\)

• TH2: Với \(x = \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} < 0 \Leftrightarrow k <  - \frac{5}{6}\) mà \(k \in \mathbb{Z}\) nên \({k_{\max }} =  - 1 \Rightarrow x =  - \frac{\pi }{{48}}.\)

So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là \(x =  - \frac{\pi }{{48}} \in \left( { - \frac{\pi }{{12}};0} \right).\)

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP