Câu hỏi:

21/06/2024 1,317 Lưu

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) thỏa mãn \(f'\left( x \right) = \frac{1}{{x - 1}},\,\,f\left( 0 \right) = 2022\) và \(f\left( 2 \right) = 2023.\) Tính \(S = f\left( 3 \right) - f\left( { - 1} \right).\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(f'\left( x \right) = \frac{1}{{x - 1}}\)

\( \Rightarrow f\left( x \right) = \int {\frac{1}{{x - 1}}} \;{\rm{d}}x\) \[ = \ln \left| {x - 1} \right| + C = \left\{ \begin{array}{l}\ln \left( {x - 1} \right) + {C_1}\,\,{\rm{khi}}\,\,x > 1\\\ln \left( {1 - x} \right) + {C_2}\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\]

Mặt khác \(\left\{ \begin{array}{l}f\left( 0 \right) = 2022\\f\left( 2 \right) = 2023\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{C_2} = 2022\\{C_1} = 2023\end{array} \right..\)

Vậy \[f\left( x \right) = \left\{ \begin{array}{l}\ln \left( {x - 1} \right) + 2023\,\,{\rm{khi}}\,\,x > 1\\\ln \left( {1 - x} \right) + 2022\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\].

Do đó \(S = f\left( 3 \right) - f\left( { - 1} \right) = \ln 2 + 2023 - \ln 2 - 2022 = 1.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP