Câu hỏi:
21/06/2024 522Đường thẳng \(y = m\) cắt đồ thị hàm số \(y = {x^4} - {x^2}\) tại 4 điểm phân biệt khi và chỉ khi
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hàm số \(y = {x^4} - {x^2}\) có tập xác định \(D = \mathbb{R}.\)
Ta có \(y' = 4{x^3} - 2x\,;\) \(y' = 0 \Leftrightarrow 4{x^3} - 2x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \pm \frac{{\sqrt 2 }}{2}.}\end{array}} \right.\)
Bảng biến thiên:
Dựa vào bảng biến thiên đường thẳng \(y = m\) cắt đồ thị hàm số \(y = {x^4} - {x^2}\) tại 4 điểm phân biệt \( \Leftrightarrow - \frac{1}{4} < m < 0.\) Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3}\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right)\)?
Câu 3:
Câu 4:
Câu 5:
Biết \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + ax + b}}{{x - 2}} = 6\) với \[a,\,\,b\] là các số nguyên. Tính \(a + b.\)
Câu 7:
Trong không gian hệ tọa độ \[Oxyz,\] cho \(A\left( {1\,;\,\,2\,;\,\, - 1} \right);\,\,B\left( { - 1\,;\,\,0\,;\,\,1} \right)\) và mặt phẳng \(\left( P \right):x + 2y - z + 1 = 0.\) Phương trình mặt phẳng \(\left( Q \right)\) qua \[A,\,\,B\] và vuông góc với \(\left( P \right)\) là
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận