Câu hỏi:

21/06/2024 390

Số nghiệm nguyên của bất phương trình \({\left( {4 + \sqrt {15} } \right)^x} + {\left( {4 - \sqrt {15} } \right)^x} \le 62\) là

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\left( {4 + \sqrt {15} } \right)\left( {4 - \sqrt {15} } \right) = 1\) nên bất phương trình trở thành:

\({\left( {4 + \sqrt {15} } \right)^x} + {\left( {4 - \sqrt {15} } \right)^x} \le 62\)\[ \Leftrightarrow {\left( {4 + \sqrt {15} } \right)^x} + {\left( {\frac{1}{{4 + \sqrt {15} }}} \right)^x} \le 62\]

\( \Leftrightarrow {\left( {4 + \sqrt {15} } \right)^x} + \frac{1}{{{{\left( {4 + \sqrt {15} } \right)}^x}}} \le 62\).

Đặt \(t = {\left( {4 + \sqrt {15} } \right)^x},\,\,t > 0.\)

Bất phương trình trở thành: \(t + \frac{1}{t} \le 62 \Leftrightarrow {t^2} - 62t + 1 \le 0\)\( \Leftrightarrow 31 - 8\sqrt {15}  \le t \le 31 + 8\sqrt {15} \)

\( \Rightarrow 31 - 8\sqrt {15}  \le {\left( {4 + \sqrt {15} } \right)^x} \le 31 + 8\sqrt {15}  \Leftrightarrow  - 2 \le x \le 2.\)

Do đó, số nghiệm nguyên của bất phương trình là 5. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3}\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right)\)?

Xem đáp án » 13/07/2024 6,069

Câu 2:

Khu vực Mȳ La-tinh có kinh tế còn chậm phát triển chủ yếu do 

Xem đáp án » 22/07/2024 5,033

Câu 3:

Vị trí địa lí nước ta không tạo thuận lợi cho hoạt động nào sau đây? 

Xem đáp án » 22/07/2024 2,899

Câu 4:

Biết \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + ax + b}}{{x - 2}} = 6\) với \[a,\,\,b\] là các số nguyên. Tính \(a + b.\)

Xem đáp án » 12/07/2024 1,855

Câu 5:

Phương thức biểu đạt chính của văn bản là gì? 

Xem đáp án » 22/07/2024 1,589

Câu 6:

Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức \(G\left( x \right) = 0,024{x^2}\left( {30 - x} \right)\), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp \[(x\] được tính bằng \[mg).\] Lượng thuốc để tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất là

Xem đáp án » 13/07/2024 1,260

Câu 7:

Tìm tất cả các giá trị của tham số \(m\) đế hàm số \(y = {x^3} - \left( {3m + 6} \right){x^2} + \left( {3{m^2} + 12m} \right)x + 1\) nghịch biến trên đoạn \[\left[ {1\,;\,\,3} \right].\]

Xem đáp án » 21/06/2024 1,229

Bình luận


Bình luận