Câu hỏi:

21/06/2024 1,753

Tìm tất cả các giá trị của tham số \(m\) đế hàm số \(y = {x^3} - \left( {3m + 6} \right){x^2} + \left( {3{m^2} + 12m} \right)x + 1\) nghịch biến trên đoạn \[\left[ {1\,;\,\,3} \right].\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(y' = 3{x^2} - 6\left( {m + 2} \right)x + 3\left( {{m^2} + 4m} \right) = 3(x - m)(x - m - 4)\,;\)\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = m}\\{x = m + 4}\end{array}.} \right.\)

Do đó phương trình \(y' = 0\) luôn có 2 nghiệm phân biệt.

Bảng biến thiên:

Media VietJack

Để hàm số nghịch biến trên \[\left[ {1\,;\,\,3} \right]\] thì \(\left\{ {\begin{array}{*{20}{l}}{m \le 1}\\{m + 4 \ge 3}\end{array} \Leftrightarrow  - 1 \le m \le 1} \right..\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP