Trên mặt phẳng toạ độ \[Oxy,\] cho tam giác \[ABC\] có hai đường cao là \[BM\] và \[CN.\] Giả sử ba đường thẳng \[BC,\,\,BM,\,\,CN\] lần lượt có phương trình là \( - x + 9y + 6 = 0,\)\(3x - y + 8 = 0,\) \(x + y - 6 = 0.\) Tọa độ đỉnh \[A\] là
Quảng cáo
Trả lời:

Vì \(B = BC \cap BM\) nên tọa độ \(B\) thỏa mãn hệ:
\(\left\{ {\begin{array}{*{20}{c}}{ - x + 9y + 6 = 0}\\{3x - y + 8 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - 3}\\{y = - 1}\end{array} \Rightarrow B\left( { - 3\,;\,\, - 1} \right)} \right.} \right..\)
Vì \(C = BC \cap CN\) nên tọa độ \(C\) thỏa mãn hệ:
\(\left\{ {\begin{array}{*{20}{c}}{ - x + 9y + 6 = 0}\\{x + y - 6 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 6}\\{y = 0}\end{array} \Rightarrow C\left( {6\,;\,\,0} \right)} \right.} \right..\)Ta có \(AB \bot CN\) nên \[AB\] có vectơ pháp tuyến \({\vec n_{AB}} = {\vec u_{CN}} = \left( { - 1\,;\,\,1} \right)\) và qua \(B\left( { - 3\,;\,\, - 1} \right)\) nên \[AB\] có phương trình là: \( - 1\left( {x + 3} \right) + 1\left( {y + 1} \right) = 0 \Leftrightarrow - x + y - 2 = 0.\)
Ta có \(AC \bot BM\) nên \[AC\] có vectơ pháp tuyến \({\vec n_{AC}} = {\vec u_{BM}} = \left( {1\,;\,\,3} \right)\) và qua \(C\left( {6\,;\,\,0} \right)\) nên \[AC\] có phương trình là \(1\left( {x - 6} \right) + 3\left( {y - 0} \right) = 0 \Leftrightarrow x + 3y - 6 = 0.\)
Vì \(A = AB \cap AC\) nên tọa độ \(A\) thỏa mãn hệ: \[\left\{ {\begin{array}{*{20}{c}}{ - x + y - 2 = 0}\\{x + 3y - 6 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 2}\end{array} \Rightarrow A\left( {0\,;\,\,2} \right)} \right.} \right..\]
Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).
Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).
Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)
Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]
Đáp án: 24.
Câu 2
Lời giải
Doanh thu của công ty tháng 7 là: \({R_7} = 6 \cdot \left( {1 + 0,1} \right)\) (tỷ đồng).
Doanh thu của công ty tháng 8 là: \({R_8} = 6 \cdot {\left( {1 + 0,1} \right)^2}\) (tỷ đồng).
......
Doanh thu của công ty tháng 12 là: \({R_{12}} = 6 \cdot {\left( {1 + 0,1} \right)^6}\) (tỷ đồng).
Tổng doanh thu từ tháng 6 là: \(TR = 6 \cdot \left( {1 + 1,1 + 1,{1^2} + 1,{1^3} + \ldots + 1,{1^6}} \right) = 56,92\) (tỷ đồng).
Suy ra, chỉ tiêu của công ty là: \(T = 56,92 - 6 + 20 = 70,92 \approx 70,9\) (tỷ đồng). Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
