Câu hỏi:
21/06/2024 518Trên mặt phẳng toạ độ \[Oxy,\] cho tam giác \[ABC\] có hai đường cao là \[BM\] và \[CN.\] Giả sử ba đường thẳng \[BC,\,\,BM,\,\,CN\] lần lượt có phương trình là \( - x + 9y + 6 = 0,\)\(3x - y + 8 = 0,\) \(x + y - 6 = 0.\) Tọa độ đỉnh \[A\] là
Quảng cáo
Trả lời:
Vì \(B = BC \cap BM\) nên tọa độ \(B\) thỏa mãn hệ:
\(\left\{ {\begin{array}{*{20}{c}}{ - x + 9y + 6 = 0}\\{3x - y + 8 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - 3}\\{y = - 1}\end{array} \Rightarrow B\left( { - 3\,;\,\, - 1} \right)} \right.} \right..\)
Vì \(C = BC \cap CN\) nên tọa độ \(C\) thỏa mãn hệ:
\(\left\{ {\begin{array}{*{20}{c}}{ - x + 9y + 6 = 0}\\{x + y - 6 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 6}\\{y = 0}\end{array} \Rightarrow C\left( {6\,;\,\,0} \right)} \right.} \right..\)Ta có \(AB \bot CN\) nên \[AB\] có vectơ pháp tuyến \({\vec n_{AB}} = {\vec u_{CN}} = \left( { - 1\,;\,\,1} \right)\) và qua \(B\left( { - 3\,;\,\, - 1} \right)\) nên \[AB\] có phương trình là: \( - 1\left( {x + 3} \right) + 1\left( {y + 1} \right) = 0 \Leftrightarrow - x + y - 2 = 0.\)
Ta có \(AC \bot BM\) nên \[AC\] có vectơ pháp tuyến \({\vec n_{AC}} = {\vec u_{BM}} = \left( {1\,;\,\,3} \right)\) và qua \(C\left( {6\,;\,\,0} \right)\) nên \[AC\] có phương trình là \(1\left( {x - 6} \right) + 3\left( {y - 0} \right) = 0 \Leftrightarrow x + 3y - 6 = 0.\)
Vì \(A = AB \cap AC\) nên tọa độ \(A\) thỏa mãn hệ: \[\left\{ {\begin{array}{*{20}{c}}{ - x + y - 2 = 0}\\{x + 3y - 6 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 2}\end{array} \Rightarrow A\left( {0\,;\,\,2} \right)} \right.} \right..\]
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).
Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).
Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)
Ta có bảng biến thiên của \(f\left( x \right)\) như sau:
\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]
Đáp án: 24.
Lời giải
Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)