Câu hỏi:

21/06/2024 531 Lưu

Trên mặt phẳng toạ độ \[Oxy,\] cho tam giác \[ABC\] có hai đường cao là \[BM\] và \[CN.\] Giả sử ba đường thẳng \[BC,\,\,BM,\,\,CN\] lần lượt có phương trình là \( - x + 9y + 6 = 0,\)\(3x - y + 8 = 0,\) \(x + y - 6 = 0.\) Tọa độ đỉnh \[A\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Vì \(B = BC \cap BM\) nên tọa độ \(B\) thỏa mãn hệ:

 \(\left\{ {\begin{array}{*{20}{c}}{ - x + 9y + 6 = 0}\\{3x - y + 8 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x =  - 3}\\{y =  - 1}\end{array} \Rightarrow B\left( { - 3\,;\,\, - 1} \right)} \right.} \right..\)

Vì \(C = BC \cap CN\) nên tọa độ \(C\) thỏa mãn hệ:

\(\left\{ {\begin{array}{*{20}{c}}{ - x + 9y + 6 = 0}\\{x + y - 6 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 6}\\{y = 0}\end{array} \Rightarrow C\left( {6\,;\,\,0} \right)} \right.} \right..\)

Ta có \(AB \bot CN\) nên \[AB\] có vectơ pháp tuyến \({\vec n_{AB}} = {\vec u_{CN}} = \left( { - 1\,;\,\,1} \right)\) và qua \(B\left( { - 3\,;\,\, - 1} \right)\) nên \[AB\] có phương trình là: \( - 1\left( {x + 3} \right) + 1\left( {y + 1} \right) = 0 \Leftrightarrow  - x + y - 2 = 0.\)

Ta có \(AC \bot BM\) nên \[AC\] có vectơ pháp tuyến \({\vec n_{AC}} = {\vec u_{BM}} = \left( {1\,;\,\,3} \right)\) và qua \(C\left( {6\,;\,\,0} \right)\) nên \[AC\] có phương trình là \(1\left( {x - 6} \right) + 3\left( {y - 0} \right) = 0 \Leftrightarrow x + 3y - 6 = 0.\)

Vì \(A = AB \cap AC\) nên tọa độ \(A\) thỏa mãn hệ: \[\left\{ {\begin{array}{*{20}{c}}{ - x + y - 2 = 0}\\{x + 3y - 6 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 2}\end{array} \Rightarrow A\left( {0\,;\,\,2} \right)} \right.} \right..\]

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP