Câu hỏi:

21/06/2024 212

Trong không gian \[Oxyz,\] cho bốn điểm \(A\left( {2\,;\,\, - 3\,;\,\,7} \right),\,\,B\left( {0\,;\,\,4\,;\,\,1} \right)\), \(C\left( {3\,;\,\,0\,;\,\,5} \right)\) và \(D\left( {3\,;\,\,3\,;\,\,3} \right).\) Gọi \(M\) là điểm nằm trên mặt phẳng \[\left( {Oyz} \right)\] sao cho biểu thức \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right|\) đạt giá trị nhỏ nhất. Khi đó tọa độ của \(M\) là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\overrightarrow {AB}  = \left( { - 2\,;\,\,7\,;\,\, - 6} \right),\,\,\overrightarrow {AC}  = \left( {1\,;\,\,3\,;\,\, - 2} \right),\,\,\overrightarrow {AD}  = \left( {1\,;\,\,6\,;\,\, - 4} \right)\)

Nên \[\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  =  - 4 \ne 0.\] Suy ra \(\overrightarrow {AB} \,,\,\,\,\overrightarrow {AC} \,,\,\,\overrightarrow {AD} \) không đồng phẳng.

Gọi \(G\) là trọng tâm tứ diện \[ABCD.\] Khi đó \(G\left( {2\,;\,\,1\,;\,\,4} \right).\)

Ta có \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = \left| {4\overrightarrow {MG} } \right| = 4MG.\)

Do đó \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right|\) nhỏ nhất khi và chỉ khi \[MG\] ngắn nhất.

Vậy \(M\) là hình chiếu vuông góc của \(G\) lên mặt phẳng \[\left( {Oyz} \right)\] nên \(M\left( {0\,;\,\,1\,;\,\,4} \right).\)

Chọn B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3}\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right)\)?

Xem đáp án » 13/07/2024 7,990

Câu 2:

Khu vực Mȳ La-tinh có kinh tế còn chậm phát triển chủ yếu do 

Xem đáp án » 22/07/2024 5,209

Câu 3:

Một đoạn dây dẫn mang dòng điện đặt trong từ trường đều có các đường sức từ thẳng đứng hướng từ trên xuống như hình vẽ. Lực từ tác dụng lên đoạn dây có chiều
 
Một đoạn dây dẫn mang dòng điện đặt trong từ trường đều có các đường sức từ thẳng đứng hướng từ trên xuống như hình vẽ. Lực từ tác dụng lên đoạn dây có chiều  (ảnh 1)

Xem đáp án » 22/07/2024 4,030

Câu 4:

Vị trí địa lí nước ta không tạo thuận lợi cho hoạt động nào sau đây? 

Xem đáp án » 22/07/2024 3,433

Câu 5:

Biết \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + ax + b}}{{x - 2}} = 6\) với \[a,\,\,b\] là các số nguyên. Tính \(a + b.\)

Xem đáp án » 12/07/2024 2,728

Câu 6:

Phương thức biểu đạt chính của văn bản là gì? 

Xem đáp án » 22/07/2024 1,913

Câu 7:

Trong không gian hệ tọa độ \[Oxyz,\] cho \(A\left( {1\,;\,\,2\,;\,\, - 1} \right);\,\,B\left( { - 1\,;\,\,0\,;\,\,1} \right)\) và mặt phẳng \(\left( P \right):x + 2y - z + 1 = 0.\) Phương trình mặt phẳng \(\left( Q \right)\) qua \[A,\,\,B\] và vuông góc với \(\left( P \right)\) là

Xem đáp án » 21/06/2024 1,817
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua