Câu hỏi:
21/06/2024 434Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({8^{f\left( x \right) - 2}} - 3 \cdot {4^{f\left( x \right) - 2}} + \left( {m + 3} \right){2^{f\left( x \right) - 2}} - 4 - 2m = 0\) có nghiệm \(x \in \left( { - 1\,;\,\,0} \right)?\)
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đặt \(t = {2^{f\left( x \right) - 2}}\,\,\left( {t > 0} \right).\) Phương trình đã cho trở thành
Với \(x \in \left( { - 1\,;\,\,0} \right)\) nên \(f\left( x \right) \in \left( {0\,;\,\,2} \right) \Leftrightarrow t = {2^{f\left( x \right) - 2}} \in \left( {\frac{1}{4}\,;\,\,1} \right).\)
Yêu cầu bài toán tương đương với (1) có nghiệm thuộc khoảng \(\left( {\frac{1}{4}\,;\,\,1} \right)\)
Suy ra \( - {t^2} + 2t - 4 + 2m = 0\) có nghiệm thuộc khoảng \(\left( {\frac{1}{4}\,;\,\,1} \right)\)
Hay \(m = \frac{1}{2}\left( { - {t^2} + 2t - 4} \right)\) có nghiệm thuộc khoảng \(\left( {\frac{1}{4}\,;\,\,1} \right)\)
Đặt
Ta có bảng biến thiên:
Để phương trình có nghiệm thì \( - \frac{{57}}{{32}} < m < - \frac{3}{2}.\)
Vì \(m \in \mathbb{Z}\) nên không có giá trị nguyên nào của \(m\) để phương trình đã cho có nghiệm.
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3}\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right)\)?
Câu 3:
Câu 4:
Câu 5:
Biết \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + ax + b}}{{x - 2}} = 6\) với \[a,\,\,b\] là các số nguyên. Tính \(a + b.\)
Câu 7:
Trong không gian hệ tọa độ \[Oxyz,\] cho \(A\left( {1\,;\,\,2\,;\,\, - 1} \right);\,\,B\left( { - 1\,;\,\,0\,;\,\,1} \right)\) và mặt phẳng \(\left( P \right):x + 2y - z + 1 = 0.\) Phương trình mặt phẳng \(\left( Q \right)\) qua \[A,\,\,B\] và vuông góc với \(\left( P \right)\) là
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận