Câu hỏi:

21/06/2024 558

Media VietJack

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({8^{f\left( x \right) - 2}} - 3 \cdot {4^{f\left( x \right) - 2}} + \left( {m + 3} \right){2^{f\left( x \right) - 2}} - 4 - 2m = 0\) có nghiệm \(x \in \left( { - 1\,;\,\,0} \right)?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(t = {2^{f\left( x \right) - 2}}\,\,\left( {t > 0} \right).\) Phương trình đã cho trở thành

t33t2+2m+3t2m4=0t1t22t+4+2m=0(1)

Với \(x \in \left( { - 1\,;\,\,0} \right)\) nên \(f\left( x \right) \in \left( {0\,;\,\,2} \right) \Leftrightarrow t = {2^{f\left( x \right) - 2}} \in \left( {\frac{1}{4}\,;\,\,1} \right).\)

Yêu cầu bài toán tương đương với (1) có nghiệm thuộc khoảng \(\left( {\frac{1}{4}\,;\,\,1} \right)\)

Suy ra \( - {t^2} + 2t - 4 + 2m = 0\) có nghiệm thuộc khoảng \(\left( {\frac{1}{4}\,;\,\,1} \right)\)

Hay \(m = \frac{1}{2}\left( { - {t^2} + 2t - 4} \right)\) có nghiệm thuộc khoảng \(\left( {\frac{1}{4}\,;\,\,1} \right)\)

Đặt gt=12t2+2t4g't=t+1>0  t14;  1

Ta có bảng biến thiên:

Media VietJack

Để phương trình có nghiệm thì \( - \frac{{57}}{{32}} < m <  - \frac{3}{2}.\)

Vì \(m \in \mathbb{Z}\) nên không có giá trị nguyên nào của \(m\) để phương trình đã cho có nghiệm.

Chọn  A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP