Câu hỏi:

21/06/2024 658 Lưu

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \sqrt { - 2x + 3m + 2}  + \frac{{2x - 1}}{{x + 2m - 4}}\)xác định trên khoảng \[\left( { - \infty \,;\,\, - 2} \right)?\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện xác định: \(\left\{ {\begin{array}{*{20}{c}}{ - 2x + 3m + 2 \ge 0}\\{x + 2m - 4 \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le \frac{{3m + 2}}{2}}\\{x \ne  - 2m + 4}\end{array}} \right.} \right.\).

Để hàm số xác định trên \(\left( { - \infty \,;\,\, - 2} \right)\) thì \(\left\{ {\begin{array}{*{20}{l}}{\frac{{3m + 2}}{2} \ge  - 2}\\{ - 2m + 4 \ge  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge  - 2}\\{m \le 3}\end{array}} \right.} \right.\) \( \Rightarrow  - 2 \le m \le 3.\)

Hay \[m \in \left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,1\,;\,\,2\,;\,\,3} \right\}.\]

Vậy có tất cả 6 giá trị của \(m\) thoả mãn yêu cầu bài toán. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP