Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_0^2 {\frac{{f'\left( x \right)}}{{x + 2}}} \;{\rm{d}}x = 3\) và \(f\left( 2 \right) - 2f\left( 0 \right) = - 4.\) Tích phân \(\int\limits_0^1 {\frac{{f\left( {2x} \right)}}{{{{\left( {x + 1} \right)}^2}}}} \;{\rm{d}}x\) bằng
Quảng cáo
Trả lời:
Ta có \(K = \int\limits_0^2 {\frac{{f'\left( x \right)}}{{x + 2}}} \;{\rm{d}}x = \int\limits_0^2 {\frac{{d\left( {f\left( x \right)} \right)}}{{x + 2}}} = \left. {\left( {\frac{1}{{x + 2}} \cdot f\left( x \right)} \right)} \right|_0^2 - \int\limits_0^2 {f\left( x \right) \cdot d\left( {\frac{1}{{x + 2}}} \right)} \)
\( = \frac{1}{4} \cdot f\left( 2 \right) - \frac{1}{2} \cdot f\left( 0 \right) + \int_0^2 f \left( x \right) \cdot \frac{{dx}}{{{{\left( {x + 2} \right)}^2}}} = \frac{1}{4}\left[ {f\left( 2 \right) - 2f\left( 0 \right)} \right] + \int\limits_0^2 {\frac{{f\left( x \right)}}{{{{\left( {x + 2} \right)}^2}}}} \;{\rm{d}}x\)
\( = \frac{1}{4} \cdot \left( { - 4} \right) + \int\limits_0^2 {\frac{{f\left( x \right)}}{{{{\left( {x + 2} \right)}^2}}}} \;{\rm{d}}x = - 1 + \int\limits_0^2 {\frac{{f\left( x \right)}}{{{{\left( {x + 2} \right)}^2}}}} \;{\rm{d}}x = 3\)\( \Rightarrow \int\limits_0^2 {\frac{{f\left( x \right)}}{{{{\left( {x + 2} \right)}^2}}}} \;{\rm{d}}x = 4.\)
Ta cần tính: \(I = \int\limits_0^1 {\frac{{f\left( {2x} \right)}}{{{{\left( {x + 1} \right)}^2}}}} \;{\rm{d}}x.\) Đặt \(t = 2x \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{t}{2}}\\{dt = 2dx}\end{array}} \right..\)
Đổi cận: \(\left\{ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow t = 0}\\{x = 1 \Rightarrow t = 2}\end{array}} \right..\)
\[ \Rightarrow I = \int\limits_0^2 {\frac{{f\left( t \right)}}{{{{\left( {\frac{t}{2} + 1} \right)}^2}}} \cdot \frac{{dt}}{2}} = \int\limits_0^2 {\frac{{4f\left( t \right)}}{{{{\left( {t + 2} \right)}^2}}} \cdot \frac{{dt}}{2}} = 2 \cdot \int\limits_0^2 {\frac{{f\left( t \right)}}{{{{\left( {t + 2} \right)}^2}}}dt} = 2 \cdot 4 = 8\].
Chọn B
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).
Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).
Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)
Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]
Đáp án: 24.
Câu 2
Lời giải
Doanh thu của công ty tháng 7 là: \({R_7} = 6 \cdot \left( {1 + 0,1} \right)\) (tỷ đồng).
Doanh thu của công ty tháng 8 là: \({R_8} = 6 \cdot {\left( {1 + 0,1} \right)^2}\) (tỷ đồng).
......
Doanh thu của công ty tháng 12 là: \({R_{12}} = 6 \cdot {\left( {1 + 0,1} \right)^6}\) (tỷ đồng).
Tổng doanh thu từ tháng 6 là: \(TR = 6 \cdot \left( {1 + 1,1 + 1,{1^2} + 1,{1^3} + \ldots + 1,{1^6}} \right) = 56,92\) (tỷ đồng).
Suy ra, chỉ tiêu của công ty là: \(T = 56,92 - 6 + 20 = 70,92 \approx 70,9\) (tỷ đồng). Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
