Câu hỏi:

12/07/2024 207 Lưu

Cho hình chóp \[S.ABCD\] có đáy là hình thoi tâm \(O\,,\,\,\Delta ABD\) đều cạnh \(a\sqrt 2 ,\,\,SA\) vuông góc với mặt phẳng đáy và \(SA = \frac{{3a\sqrt 2 }}{2}.\) Góc giữa đường thẳng \[SO\] và mặt phẳng \(\left( {ABCD} \right)\) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Vì \[ABCD\] là hình thoi có tâm là \(O\) nên \(O\) là trung điểm của \[BD.\]

Mà \(\Delta ABD\) đều nên \(AO \bot BD\).

Lại có \[SA \bot (ABCD) \Rightarrow \widehat {\left( {SO,\,\,\left( {ABCD} \right)} \right)} = \widehat {SOA}\]

Xét \(\Delta ABO\) có:

\(AO = \sqrt {A{B^2} - B{O^2}}  = \sqrt {{{\left( {a\sqrt 2 } \right)}^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = \frac{{a\sqrt 6 }}{2}.\)
Đáp án: 60.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3} \Rightarrow y' = {x^2} - 2x - m\).

Để hàm số \(y\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right) \Leftrightarrow y' = 0\) có đúng một nghiệm thuộc khoản \(\left( {0\,;\,\,6} \right)\).

Xét hàm số \(f\left( x \right) = {x^2} - 2xf'\left( x \right) = 2x - 2\,;\,\,f'\left( x \right) = 0 \Rightarrow x = 1.\)

Ta có bảng biến thiên của \(f\left( x \right)\) như sau:

Media VietJack

\( \Rightarrow 0 \le m < 24\)\( \Rightarrow \) Có 24 giá trị của tham số \[m.\]

Đáp án: 24.

Câu 2

Lời giải

Áp dụng quy tắc bàn tay trái, lực từ tác dụng lên đoạn dây có chiều nằm ngang hướng từ phải sang trái. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP