Câu hỏi:

12/07/2024 284

Xét các số thực dương phân biệt \[x,\,\,y\] thỏa mãn \(\frac{{x + y}}{{x - y}} = {\log _2}3.\) Khi biểu thức \({4^{x + y}} + 16 \cdot {3^{y - x}}\) đạt giá trị nhỏ nhất thì giá trị của \(x + 3y = a - {\log _b}a\) với \[a,\,\,b\] là các số nguyên dương. Tính \(a + b.\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[\frac{{x + y}}{{x - y}} = {\log _2}3 \Leftrightarrow y - x =  - \left( {x + y} \right){\log _3}2\] thế vào biểu thức \(P = {4^{x + y}} + {16.3^{y - x}}\)

Ta được \(P = {4^{x + y}} + {16.3^{ - \left( {x + y} \right){{\log }_3}2}} = {4^{x + y}} + {16.2^{ - \left( {x + y} \right)}} = {4^{x + y}} + \frac{{16}}{{{2^{x + y}}}}\)

Cách 1: Đặt \(t = {2^{x + y}} > 0\) ta được \(P = {t^2} + \frac{{16}}{t} = f\left( t \right)\) và \(f'\left( t \right) = 2t - \frac{{16}}{{{t^2}}} \Leftrightarrow t = 2\)

Lập bảng biến thiên suy ra \({P_{\min }} = 12\) khi \(t = {2^{x + y}} = 2 \Leftrightarrow x + y = 1.\)

Cách 2: Áp dụng bất đẳng thức Cô-si ta có: \(P = {2^{2\left( {x + y} \right)}} + \frac{8}{{{2^{x + y}}}} + \frac{8}{{{2^{x + y}}}} \ge 3\sqrt[3]{{8 \cdot 8}} = 12.\)

Dấu  xảy ra  \({2^{2\left( {x + y} \right)}} = \frac{8}{{{2^{x + y}}}} \Rightarrow {2^{3\left( {x + y} \right)}} = {2^3} \Leftrightarrow x + y = 1\).

Kết hợp với \(\left\{ {\begin{array}{*{20}{l}}{x + y = 1}\\{y - x =  - {{\log }_3}2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x + y = 1}\\{x - y = {{\log }_3}2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{1 + {{\log }_3}2}}{2}}\\{y = \frac{{1 - {{\log }_3}2}}{2}}\end{array}} \right.} \right.} \right.\).

Suy ra \(x + 3y = \frac{{1 + {{\log }_3}2}}{2} + 3 \cdot \frac{{1 - {{\log }_3}2}}{2} = 2 - {\log _3}2 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 3}\end{array} \Rightarrow a + b = 5} \right..\)

Đáp án: 5.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3}\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right)\)?

Xem đáp án » 13/07/2024 7,596

Câu 2:

Khu vực Mȳ La-tinh có kinh tế còn chậm phát triển chủ yếu do 

Xem đáp án » 22/07/2024 5,170

Câu 3:

Một đoạn dây dẫn mang dòng điện đặt trong từ trường đều có các đường sức từ thẳng đứng hướng từ trên xuống như hình vẽ. Lực từ tác dụng lên đoạn dây có chiều
 
Một đoạn dây dẫn mang dòng điện đặt trong từ trường đều có các đường sức từ thẳng đứng hướng từ trên xuống như hình vẽ. Lực từ tác dụng lên đoạn dây có chiều  (ảnh 1)

Xem đáp án » 22/07/2024 3,715

Câu 4:

Vị trí địa lí nước ta không tạo thuận lợi cho hoạt động nào sau đây? 

Xem đáp án » 22/07/2024 3,301

Câu 5:

Biết \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + ax + b}}{{x - 2}} = 6\) với \[a,\,\,b\] là các số nguyên. Tính \(a + b.\)

Xem đáp án » 12/07/2024 2,665

Câu 6:

Phương thức biểu đạt chính của văn bản là gì? 

Xem đáp án » 22/07/2024 1,846

Câu 7:

Trong không gian hệ tọa độ \[Oxyz,\] cho \(A\left( {1\,;\,\,2\,;\,\, - 1} \right);\,\,B\left( { - 1\,;\,\,0\,;\,\,1} \right)\) và mặt phẳng \(\left( P \right):x + 2y - z + 1 = 0.\) Phương trình mặt phẳng \(\left( Q \right)\) qua \[A,\,\,B\] và vuông góc với \(\left( P \right)\) là

Xem đáp án » 21/06/2024 1,672