Câu hỏi:
24/06/2024 432
Xác định các hệ số \[a,\,\,b,\,\,c\] để đồ thị hàm số \(y = {x^3} + a{x^2} + bx + c\) đi qua điểm \(\left( {1\,;\,\,0} \right)\) và có điểm cực trị \[\left( { - 2\,;\,\,0} \right).\] Giá trị biểu thức \(T = {a^2} + {b^2} + {c^2}\) là
Xác định các hệ số \[a,\,\,b,\,\,c\] để đồ thị hàm số \(y = {x^3} + a{x^2} + bx + c\) đi qua điểm \(\left( {1\,;\,\,0} \right)\) và có điểm cực trị \[\left( { - 2\,;\,\,0} \right).\] Giá trị biểu thức \(T = {a^2} + {b^2} + {c^2}\) là
Quảng cáo
Trả lời:
Ta có: \(y = {x^3} + a{x^2} + bx + c \Rightarrow y' = 3{x^2} + 2ax + b.\)
Theo đề, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y\left( 1 \right) = 0}\\{y\left( { - 2} \right) = 0}\\{y'\left( { - 2} \right) = 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 = {1^3} + a \cdot {1^2} + b \cdot 1 + c}\\{0 = {{\left( { - 2} \right)}^3} + a \cdot {{\left( { - 2} \right)}^2} + b \cdot \left( { - 2} \right) + c}\\{0 = 3 \cdot {{\left( { - 2} \right)}^2} + 2a \cdot \left( { - 2} \right) + b}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b + c = - 1}\\{4a - 2b + c = 8}\\{ - 4a + b = - 12}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3}\\{b = 0}\\{c = - 4}\end{array}} \right.} \right..\)
Vậy \(T = {a^2} + {b^2} + {c^2} = {3^2} + {0^2} + {\left( { - 4} \right)^2} = 25.\) Chọn A.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.