Câu hỏi:

24/06/2024 2,657

Cho hàm số \(y = {x^3} + 3m{x^2} - {m^3}\) có đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:y = {m^2}x + 2{m^3}.\) Biết rằng \({m_1},{m_2}\,\,\left( {{m_1} > {m_2}} \right)\) là hai giá trị thực của \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( {{C_m}} \right)\) tại 3 điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^4 + x_2^4 + x_3^4 = 83.\) Khẳng định nào dưới đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình hoành độ giao điểm của \(d\) và \(\left( {{C_m}} \right)\), ta có:

\({x^3} + 3m{x^2} - {m^3} = {m^2}x + 2{m^3}\)\( \Leftrightarrow {x^3} + 3m{x^2} - {m^2}x - 3{m^3} = 0\)

\( \Leftrightarrow \left( {{x^3} - {m^2}x} \right) + \left( {3m{x^2} - 3{m^3}} \right) = 0\)\( \Leftrightarrow \left( {x + 3m} \right)\left( {{x^2} - {m^2}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 3m}\\{x = m}\\{x =  - m}\end{array}} \right..\)

Để đường thẳng \(d\) cắt đồ thị \(\left( {{C_m}} \right)\) tại 3 điểm phân biệt có hoành độ \({x_1},{x_2},{x_3} \Leftrightarrow m \ne 0.\)

Khi đó, \(x_1^4 + x_2^4 + x_3^4 = 83 \Leftrightarrow {m^4} + {\left( { - m} \right)^4} + {\left( { - 3m} \right)^4} = 83 \Leftrightarrow 83{m^4} = 83 \Leftrightarrow m =  \pm 1.\)

Vậy \({m_1} = 1,{m_2} =  - 1\) hay \({m_1} + {m_2} = 0.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử Học sinh chơi bóng đá".

Học sinh chơi bóng chuyền".

\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".

\(A \cap B = \)"Học sinh chơi cả hai môn".

Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)

Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.

Đáp án: 35.

Lời giải

Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow  - 90 \le h\left( t \right) \le 90.\)

Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:

\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\)  Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP