Câu hỏi:
24/06/2024 125
Số nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{xy + x + y = 5}\\{{x^2} + {y^2} = 5}\end{array}} \right.\) là
Số nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{xy + x + y = 5}\\{{x^2} + {y^2} = 5}\end{array}} \right.\) là
Quảng cáo
Trả lời:
Đặt \(\left\{ {\begin{array}{*{20}{l}}{S = x + y}\\{P = xy}\end{array}} \right.\) (điều kiện : \(\left. {{S^2} \ge 4P} \right)\)
Ta được hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{S + P = 5}\\{{S^2} - 2P = 5}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{P = 5 - S}\\{{S^2} - 2\left( {5 - S} \right) = 5}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{P = 5 - S}\\{{S^2} + 2S - 15 = 0}\end{array}} \right.} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{S = - 5}\\{P = 5 - S = 10}\end{array}{\rm{ }}} \right.\)hoặc \(\left\{ {\begin{array}{*{20}{l}}{S = 3}\\{P = 5 - S = 2}\end{array}} \right.\).
• Với \(S = - 5\,;\,\,P = 10\) thì \({S^2} - 4P = 25 - 40 = - 15 < 0\) nên ta loại trường hợp này.
• Với \(S = 3\,;\,\,P = 2\) thì \({S^2} - 4P = 9 - 8 = 1 > 0\) nên khi đó \[x,\,\,y\] là nghiệm của phương trình
\({X^2} - 3X + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{X = 1}\\{X = 2}\end{array}} \right.\).
Ta có nghiệm hệ phương trình là \[\left( {x\,;\,\,y} \right) = \left( {1\,;\,\,2} \right)\] hoặc \(\left( {x\,;\,\,y} \right) = \left( {2\,;\,\,1} \right).\) Chọn A.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.