Câu hỏi:

24/06/2024 92

Cho parabol \((P):{y^2} = 4x\) và đường thẳng \(d:2x - y - 4 = 0.\) Gọi \[A,\,\,B\] là giao điểm của \(d\) và \((P).\) Tìm tung độ dương của điểm \(C \in (P)\) sao cho \(\Delta ABC\) có diện tích bằng 12.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có phương trình tung độ giao điểm của \(d\) và \((P)\) là:

\(\frac{{{y^2}}}{4} = \frac{{y + 4}}{2} \Leftrightarrow {y^2} - 2y - 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{y = 4 \Rightarrow x = 4}\\{y =  - 2 \Rightarrow x = 1}\end{array}} \right..\)

\( \Rightarrow d\) cắt \((P)\) tại hai điểm là: \[A\left( {4\,;\,\,4} \right),\,\,B\left( {1\,;\,\, - 2} \right).\]

\(C \in (P) \Rightarrow C = \left( {{c^2}\,;\,\,2c} \right){\rm{. }}\)

\(\overrightarrow {AC}  = \left( {{c^2} - 4\,;\,\,2c - 4} \right),\,\,\overrightarrow {BC}  = \left( {{c^2} - 1\,;\,\,2c + 2} \right){\rm{. }}\)

Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}\left| {\left( {{c^2} - 4} \right)\left( {2c + 2} \right) - \left( {{c^2} - 1} \right)\left( {2c - 4} \right)} \right| = 12\)

\( \Leftrightarrow \left| {6{c^2} - 6c - 12} \right| = 24 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{c^2} - c - 6 = 0}\\{{c^2} - c + 2 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{c =  - 2}\\{c = 3}\end{array}.} \right.} \right.\)

Vậy tung độ của điểm C là 6. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?

Xem đáp án » 13/07/2024 7,330

Câu 2:

Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng

Xem đáp án » 24/06/2024 5,808

Câu 3:

Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng

Xem đáp án » 24/06/2024 2,790

Câu 4:

Giám sát hệ thống tài chính toàn cầu là nhiệm vụ chủ yếu của

Xem đáp án » 23/07/2024 2,398

Câu 5:

Cho hàm số \(y = {x^3} + 3m{x^2} - {m^3}\) có đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:y = {m^2}x + 2{m^3}.\) Biết rằng \({m_1},{m_2}\,\,\left( {{m_1} > {m_2}} \right)\) là hai giá trị thực của \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( {{C_m}} \right)\) tại 3 điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^4 + x_2^4 + x_3^4 = 83.\) Khẳng định nào dưới đây đúng?

Xem đáp án » 24/06/2024 1,525

Câu 6:

Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là

Xem đáp án » 13/07/2024 1,446

Câu 7:

Polymer nào sau đây trong thành phần hóa học chỉ có hai nguyên tố C và H? 

Xem đáp án » 23/07/2024 1,312

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL