Câu hỏi:
24/06/2024 174Gọi \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{x}{{\sqrt {8 - {x^2}} }}\) thỏa mãn \(F\left( 2 \right) = 0.\) Khi đó phương trình \(F\left( x \right) = x\) có nghiệm là
Quảng cáo
Trả lời:
Ta có \(\int {\frac{x}{{\sqrt {8 - {x^2}} }}} \;{\rm{d}}x = - \frac{1}{2}\int {{{\left( {8 - {x^2}} \right)}^{ - \frac{1}{2}}}} \;{\rm{d}}\left( {8 - {x^2}} \right) = - \sqrt {8 - {x^2}} + C.\)
Mặt khác \(F\left( 2 \right) = 0 \Leftrightarrow - \sqrt {8 - {x^2}} + C = 0 \Leftrightarrow C = 2\) nên \(F\left( x \right) = - \sqrt {8 - {x^2}} + 2\).
Do đó \(F\left( x \right) = x \Leftrightarrow - \sqrt {8 - {x^2}} + 2 = x \Leftrightarrow \sqrt {8 - {x^2}} = 2 - x\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2 - x \ge 0}\\{8 - {x^2} = {{(2 - x)}^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le 2}\\{ - 2{x^2} + 4x + 4 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le 2}\\{\left[ {\begin{array}{*{20}{l}}{x = 1 + \sqrt 3 }\\{x = 1 - \sqrt 3 }\end{array} \Leftrightarrow x = 1 - \sqrt 3 .} \right.}\end{array}} \right.} \right.} \right.\)
Chọn D.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.