Câu hỏi:

24/06/2024 241

Cho hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\), với \(m\) là tham số. Có bao nhiêu giá trị nguyên âm của \(m\) để hàm số đã cho có đúng 7 điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số \(y = 3{x^4} - 4{x^3} - 12{x^2} + m\).

Ta có \(y' = 12{x^3} - 12{x^2} - 24x\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\\x = 2\end{array} \right.\).

Ta có bảng biến thiên

Media VietJack

Từ bảng biến thiên, để hàm số đã cho có 7 cực trị thì \[\left\{ \begin{array}{l}m - 5 < 0\\m > 0\end{array} \right. \Leftrightarrow 0 < m < 5.\]

Vì \(m\) nguyên nên các giá trị cần tìm của \(m\) là \[m \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4} \right\}.\] Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử Học sinh chơi bóng đá".

Học sinh chơi bóng chuyền".

\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".

\(A \cap B = \)"Học sinh chơi cả hai môn".

Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)

Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.

Đáp án: 35.

Lời giải

Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow  - 90 \le h\left( t \right) \le 90.\)

Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:

\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\)  Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP