Số nghiệm nguyên \(x\) của thoả mãn \(\left( {{3^{{x^2} - 1}} - {{27}^{x + 1}}} \right)\left[ {{{\log }_3}\left( {x + 8} \right) - 2} \right] \le 0\) là
Số nghiệm nguyên \(x\) của thoả mãn \(\left( {{3^{{x^2} - 1}} - {{27}^{x + 1}}} \right)\left[ {{{\log }_3}\left( {x + 8} \right) - 2} \right] \le 0\) là
Quảng cáo
Trả lời:
Ta có: \(\left( {{3^{{x^2} - 1}} - {{27}^{x + 1}}} \right)\left[ {{{\log }_3}\left( {x + 8} \right) - 2} \right] \le 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{{3^{{x^2} - 1}} - {{27}^{x + 1}} \le 0}\\{lo{g_3}\left( {x + 8} \right) - 2 \ge 0}\end{array}} \right.\\\left\{ \begin{array}{l}{3^{{x^2} - 1}} - {27^{x + 1}} \ge 0\\lo{g_3}\left( {x + 8} \right) - 2 \le 0\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{{3^{{x^2} - 1}} \le {3^{3x + 3}}}\\{log{ _3}\left( {x + 8} \right) \ge 2}\end{array}} \right.\\\left\{ \begin{array}{l}{3^{{x^2} - 1}} \ge {3^{3x + 3}} \\lo{g_3}\left( {x + 8} \right) \le 2\end{array} \right.\end{array} \right.\)\[ \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{{x^2} - 1 \le 3x + 3}\\{x + 8 \ge 9}\end{array}} \right.\\\left\{ \begin{array}{l}{x^2} - 1 \ge 3x + 3\\x + 8 \le 9\\x + 8 > 0\end{array} \right.\end{array} \right.\]
\( \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{{x^2} - 3x - 4 \le 0}\\{x \ge 1}\end{array}} \right.\\\left\{ \begin{array}{l}{x^2} - 3x - 4 \ge 0\\ - 8 < x \le 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{ - 1 \le x \le 4}\\{x \ge 1}\end{array}} \right.\\\left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 4\\x \le - 1\end{array} \right.\\ - 8 < x \le 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}1 \le x \le 4\\ - 8 < x \le - 1\end{array} \right.\).
Mà \(x \in \mathbb{Z}\) nên tập nghiệm của bất phương trình là \[S = \left\{ { - 7\,;\,\, - 6\,;\,\, \ldots ;\,\, - 1\,;\,\,1\,;\,\, \ldots ;\,\,4} \right\}.\]
Do đó, bất phương trình có 11 nghiệm nguyên. Chọn A.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.