Câu hỏi:

24/06/2024 564

Trong không gian \[Oxyz,\] cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cùng thỏa mãn các điều kiện sau: đi qua hai điểm \(A\left( {1\,;\,\,1\,;\,\,1} \right)\) và \(B\left( {0\,;\,\, - 2\,;\,\,2} \right)\), đồng thời cắt các trục tọa độ \[Ox,\,\,Oy\] tại hai điểm cách đều O. Giả sử \(\left( P \right)\) có phương trình \(x + {b_1}y + {c_1}z + {d_1} = 0\) và \((Q)\) có phương trình \(x + {b_2}y + {c_2}z + {d_2} = 0.\) Giá trị của biểu thức \({b_1}{b_2} + {c_1}{c_2}\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét mặt phẳng \((\alpha )\) có phương trình \(x + by + cz + d = 0\) đi qua hai điểm \(A\left( {1\,;\,\,1\,;\,\,1} \right)\) và \(B\left( {0\,;\,\, - 2\,;\,\,2} \right)\), đồng thời cắt các trục tọa độ \[Ox,\,\,Oy\] tại hai điểm cách đều.

Vì \((\alpha )\) đi qua \(A\left( {1\,;\,\,1\,;\,\,1} \right)\) và \(B\left( {0\,;\,\, - 2\,;\,\,2} \right)\) nên ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{1 + b + c + d = 0}\\{ - 2b + 2c + d = 0}\end{array}\quad (*)} \right.\)

Mặt phẳng \((\alpha )\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \(M\left( { - d\,;\,\,0\,;\,0} \right),\,\,N\left( {0\,;\,\,\frac{{ - d}}{b}\,;\,\,0} \right).\)

Vì \[M,\,\,N\] cách đều \(O\) nên \(OM = ON.\) Suy ra: \(\left| d \right| = \left| {\frac{d}{b}} \right|.\)

Nếu \(d = 0\) thì chỉ tồn tại hai mặt phẳng thỏa mãn yêu cầu bài toán (mặt phẳng này sẽ đi qua điểm \(O).\)

Do đó để tồn tại hai mặt phẳng thỏa mãn yêu cầu bài toán thì: \(|d| = \left| {\frac{d}{b}} \right| \Leftrightarrow b =  \pm 1.\)

Với \(b = 1\) thì \((*) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{c + d = 2}\\{2c + d = 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{c = 4}\\{d =  - 6}\end{array}} \right.} \right..\)

 • Ta được mặt phẳng \((P):x + y + 4z - 6 = 0\), với \(b =  - 1,\,\,(*) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{c + d = 0}\\{2c + d =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{c =  - 2}\\{d = 2}\end{array}} \right.} \right..\)

• Ta được mặt phẳng \((Q):x - y - 2z + 2 = 0\).

Vậy \({b_1}{b_2} + {c_1}{c_2} = 1 \cdot \left( { - 1} \right) + 4 \cdot \left( { - 2} \right) =  - 9.\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử Học sinh chơi bóng đá".

Học sinh chơi bóng chuyền".

\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".

\(A \cap B = \)"Học sinh chơi cả hai môn".

Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)

Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.

Đáp án: 35.

Lời giải

Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow  - 90 \le h\left( t \right) \le 90.\)

Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:

\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\)  Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP