Câu hỏi:
24/06/2024 816
Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) (1). Đường thẳng \(d:y = ax + b\) là tiếp tuyến của đồ thị hàm số (1). Biết \(d\) cắt trục hoành, trục tung lần lượt tại hai điểm \[A,\,\,B\] sao cho \(\Delta OAB\) cân tại \[O.\] Khi đó \(a + b\) bằng
Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) (1). Đường thẳng \(d:y = ax + b\) là tiếp tuyến của đồ thị hàm số (1). Biết \(d\) cắt trục hoành, trục tung lần lượt tại hai điểm \[A,\,\,B\] sao cho \(\Delta OAB\) cân tại \[O.\] Khi đó \(a + b\) bằng
Quảng cáo
Trả lời:
Tập xác định của hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) là \(D = \mathbb{R}\backslash \left\{ { - \frac{3}{2}} \right\}.\)
Ta có: \(y' = \frac{{ - 1}}{{{{\left( {2x + 3} \right)}^2}}} < 0\,,\,\,\forall x \in D.\)
Mặt khác, \(\Delta OAB\) cân tại \(O\) nên hệ số góc của tiếp tuyến là \[ - 1.\]
Gọi tọa độ tiếp điểm \(\left( {{x_0};{y_0}} \right)\), với \({x_0} \ne - \frac{3}{2}.\)
Ta có: \[y' = \frac{{ - 1}}{{{{\left( {2{x_0} + 3} \right)}^2}}} = - 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = - 2\\{x_0} = - 1\end{array} \right..\]
• Với \({x_0} = - 1 \Rightarrow {y_0} = 1.\) Phương trình tiếp tuyến là: \(y = - x\) loại vì \(A \equiv B \equiv O.\)
• Với \({x_0} = - 2 \Rightarrow {y_0} = 0.\) Phương trình tiếp tuyến là: \(y = - x - 2\) thỏa mãn.
Vậy \(d:y = ax + b\) hay \(d:y = - x - 2 \Rightarrow a = - 1\,;\,\,b = - 2 \Rightarrow a + b = - 3.\)
Chọn D.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.