Câu hỏi:
24/06/2024 1,771Trong không gian với hệ tọa độ \[Oxyz,\] cho mặt cầu \(\left( S \right)\) có tâm \(O\), bán kính \(R = 2\) và mặt cầu \(\left( {S'} \right):{(x - 1)^2} + {y^2} + {(z - 1)^2} = 1.\) Mặt phẳng \(\left( P \right)\) thay đổi luôn tiếp xúc với hai mặt cầu \(\left( S \right)\) và \(\left( {S'} \right).\) Biết rằng \(\left( P \right)\) luôn đi qua điểm \(M(a;b;c)\) cố định. Giá trị của biểu thức \(a + b + c\) bằng
Quảng cáo
Trả lời:
Mặt cầu \(\left( {S'} \right)\) có tâm \(I\left( {1\,;\,\,0\,;\,\,1} \right)\) và bán kính \(r = 1.\)
Ta có \(\overrightarrow {OI} = \left( {1\,;\,\,0\,;\,\,1} \right) \Rightarrow OI = \sqrt 2 .\)
Từ đó ta có hình vẽ mô tả vị trí tương đối của \(\left( S \right)\) và \(\left( {S'} \right)\) như sau:
Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(O\) và \(I\) lên \((P)\) và \(M = OI \cap (P).\)
Khi đó ta có \[H,\,\,K,\,\,M\] thẳng hàng.
Xét hai tam giác đồng dạng \(\Delta OHM\) và \(\Delta IKM\) ta có: \(\frac{{MI}}{{MO}} = \frac{{IK}}{{OH}} = \frac{r}{R} = \frac{1}{2} \Rightarrow MI = \frac{1}{2}MO.\)
Suy ra \(M\) đối xứng với \(O\) qua \(I\) nên \(M\) cố định.
Mặt khác ta có \(I\) là trung điểm \[OM\] nên \(M\left( {2\,;\,\,0\,;\,\,2} \right)\).
Do đó \(a = 2\,,\,\,b = 0\,,\,\,c = 2 \Rightarrow a + b + c = 4.\) Chọn B.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.