Câu hỏi:

24/06/2024 1,821

Cho hai hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) và \(g\left( x \right) = x + \frac{4}{{{x^2}}}.\) Trên đoạn \[\left[ {1\,;\,\,4} \right],\] hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có cùng giá trị nhỏ nhất và đạt tại cùng một điểm. Biết rằng điểm \(A\left( {1\,;\,\,4} \right)\) thuộc đồ thị của hàm số \(f\left( x \right).\) Giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \[\left[ {1\,;\,\,4} \right]\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(f'\left( x \right) = 3{x^2} + 2ax + b\,;\,\,g'\left( x \right) = 1 - \frac{8}{{{x^3}}}\).

Xét \(g'\left( x \right) = 0 \Leftrightarrow 1 - \frac{8}{{{x^3}}} = 0 \Leftrightarrow x = 2\).

Ta có: \(g\left( 1 \right) = 5\,;\,\,g(2) = 3\,;\,\,g(4) = \frac{{17}}{4} \Rightarrow {\min _{\left[ {1\,;\,\,4} \right]}}g\left( x \right) = 3\) tại \(x = 2.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{f'\left( 2 \right) = 0}\\{ - \frac{{2a}}{6} = 2}\\{f\left( 2 \right) = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{12 + 4a + b = 0}\\{a =  - 6}\\{8 + 4a + 2b + c = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - 6}\\{b = 12.}\\{c =  - 5}\end{array}} \right.} \right.} \right.\)

Khi đó, \(f'\left( x \right) = 3{x^2} - 12x + 12 = 3{\left( {x - 4} \right)^2} \ge 0\)

\( \Rightarrow f\left( x \right)\) đồng biến trên \(\mathbb{R} \Rightarrow {\max _{\left[ {1\,;\,\,4} \right]}}f\left( x \right) = 11.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử Học sinh chơi bóng đá".

Học sinh chơi bóng chuyền".

\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".

\(A \cap B = \)"Học sinh chơi cả hai môn".

Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)

Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.

Đáp án: 35.

Lời giải

Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow  - 90 \le h\left( t \right) \le 90.\)

Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:

\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\)  Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP