Câu hỏi:
24/06/2024 411Hai bạn A và B mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để các chữ số có mặt ở hai số bạn A và B viết giống nhau bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Mỗi bạn có \(9 \cdot A_9^2\) cách viết nên số phần tử của không gian mẫu là \(n\left( \Omega \right) = {\left( {9 \cdot A_9^2} \right)^2}.\)
Số cách viết các chữ số các chữ số có mặt trong hai số mà bạn A và B viết giống nhau.
Bạn A có tất cả \(9 \cdot A_9^2\) cách viết, trong đó \(A_9^3\) cách viết mà số không gồm chữ số 0 và có \(\left( {9 \cdot A_9^2 - A_9^3} \right)\) cách viết mà số có chữ số 0.
• TH1: Nếu A không gồm chữ số 0 có \(A_9^3\) cách, lúc này B có \(3!\) cách viết.
• TH2: Nếu A viết số 0 có \(\left( {9 \cdot A_9^2 - A_9^3} \right)\) cách, lúc này B có 4 cách viết.
Do đó, \(A_9^3 \cdot 3!\, + \left( {9 \cdot A_9^2 - A_9^3} \right) \cdot 4\) cách viết thỏa mãn.
Vậy xác suất cần tính bằng \(\frac{{A_9^3 \cdot 3!\, + \left( {9 \cdot A_9^2 - A_9^3} \right) \cdot 4}}{{{{\left( {A_9^2} \right)}^2}}} = \frac{{25}}{{2916}}.\) Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?
Câu 2:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng
Câu 3:
Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng
Câu 5:
Cho hàm số \(y = {x^3} + 3m{x^2} - {m^3}\) có đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:y = {m^2}x + 2{m^3}.\) Biết rằng \({m_1},{m_2}\,\,\left( {{m_1} > {m_2}} \right)\) là hai giá trị thực của \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( {{C_m}} \right)\) tại 3 điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^4 + x_2^4 + x_3^4 = 83.\) Khẳng định nào dưới đây đúng?
Câu 6:
Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là
Câu 7:
về câu hỏi!